S. Ansari, Existence of hypercyclic operators on topological vector spaces, Journal of Functional Analysis 148 (1997), 384–390.
F. Bayart and S. Grivaux, Frequently hypercyclic operators, Transactions of the American Mathematical Society 358 (2006), 5083–5117.
F. Bayart and S. Grivaux, Hypercyclicity and unimodular point spectrum, Journal of Functional Analysis 226 (2005), 281–300.
[+]
S. Ansari, Existence of hypercyclic operators on topological vector spaces, Journal of Functional Analysis 148 (1997), 384–390.
F. Bayart and S. Grivaux, Frequently hypercyclic operators, Transactions of the American Mathematical Society 358 (2006), 5083–5117.
F. Bayart and S. Grivaux, Hypercyclicity and unimodular point spectrum, Journal of Functional Analysis 226 (2005), 281–300.
F. Bayart and S. Grivaux, Invariant Gaussian measures for linear operators on Banach spaces and linear dynamics, Proceedings of the London Mathematical Society 94 (2007), 181–210.
F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009.
L. Bernal-González, On hypercyclic operators on Banach spaces, Proceedings of the American Mathematical Society 127 (1999), 1003–1010.
J. Bès and A. Peris, Hereditarily hypercyclic operators, Journal of Functioanl Analysis 167 (1999), 94–112.
J. Bonet, F. Martínez-Giménez and A. Peris, A Banach space wich admits no chaotic operator, The Bulletin of the London Mathematical Society 33 (2001), 196–198.
M. De la Rosa, L. Frerick, S. Grivaux and A. Peris, Chaos on Fréchet spaces with unconditional basis, preprint.
W. T. Gowers, A solution to Banach’s hyperplane problem, The Bulletin of the London Mathematical Society 26 (1994), 523–530.
W. T. Gowers and B. Maurey, Banach spaces with small spaces of operators, Mathematische Annalen 307 (1997), 543–568.
W. T. Gowers and B. Maurey, The unconditional basic sequence problem, Journal of the American Mathematical Society 6 (1993), 851–874.
S. Grivaux, A new class of frequently hypercyclic operators, Indiana University Mathematics Journal, to appear.
K. G. Grosse-Erdmann and A. Peris, Linear Chaos, Springer-Verlag, Berlin, 2011.
K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs, New Series, Vol. 20, Clarendon Press, Oxford, 2000.
S. Shkarin, On the spectrum of frequently hypercyclic operators, Proceedings of the American Mathematical Society 137 (2009), 123–134.
[-]