Mostrar el registro sencillo del ítem
dc.contributor.author | De la Rosa Penilla, Manuel | es_ES |
dc.contributor.author | Frerick, Leonhard | es_ES |
dc.contributor.author | Grivaux, Sophie | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | |
dc.date.accessioned | 2014-10-27T13:47:09Z | |
dc.date.available | 2014-10-27T13:47:09Z | |
dc.date.issued | 2012-08 | |
dc.identifier.issn | 0021-2172 | |
dc.identifier.uri | http://hdl.handle.net/10251/43598 | |
dc.description.abstract | We prove that if X is any complex separable infinite-dimensional Banach space with an unconditional Schauder decomposition, X supports an operator T which is chaotic and frequently hypercyclic. This result is extended to complex Frechet spaces with a continuous norm and an unconditional Schauder decomposition, and also to complex Frechet spaces with an unconditional basis, which gives a partial positive answer to a problem posed by Bonet. We also solve a problem of Bes and Chan in the negative by presenting hypercyclic, but non-chaotic operators on \mathbb{C}^\mathbb{N}. We extend the main result to C_0-semigroups of operators. Finally, in contrast with the complex case, we observe that there are real Banach spaces with an unconditional basis which support no chaotic operator. | es_ES |
dc.description.sponsorship | This work was partially supported by ANR-Projet Blanc DYNOP, by the MEC and FEDER Projects MTM2007-64222 and MTM2010-14909, and by Generalitat Valenciana Project PROMETEO/2008/101. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Israel Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fréchet spaces | es_ES |
dc.subject | Schauder decompositions | es_ES |
dc.subject | Banach spaces | es_ES |
dc.subject | Frequently hypercyclic operators | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Frequent hypercyclicity, chaos, and unconditional Schauder decompositions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11856-011-0210-6 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MTM2007-64222/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | De La Rosa Penilla, M.; Frerick, L.; Grivaux, S.; Peris Manguillot, A. (2012). Frequent hypercyclicity, chaos, and unconditional Schauder decompositions. Israel Journal of Mathematics. 190(1):389-399. https://doi.org/10.1007/s11856-011-0210-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11856-011-0210-6 | es_ES |
dc.description.upvformatpinicio | 389 | es_ES |
dc.description.upvformatpfin | 399 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 190 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 224077 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.description.references | S. Ansari, Existence of hypercyclic operators on topological vector spaces, Journal of Functional Analysis 148 (1997), 384–390. | es_ES |
dc.description.references | F. Bayart and S. Grivaux, Frequently hypercyclic operators, Transactions of the American Mathematical Society 358 (2006), 5083–5117. | es_ES |
dc.description.references | F. Bayart and S. Grivaux, Hypercyclicity and unimodular point spectrum, Journal of Functional Analysis 226 (2005), 281–300. | es_ES |
dc.description.references | F. Bayart and S. Grivaux, Invariant Gaussian measures for linear operators on Banach spaces and linear dynamics, Proceedings of the London Mathematical Society 94 (2007), 181–210. | es_ES |
dc.description.references | F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009. | es_ES |
dc.description.references | L. Bernal-González, On hypercyclic operators on Banach spaces, Proceedings of the American Mathematical Society 127 (1999), 1003–1010. | es_ES |
dc.description.references | J. Bès and A. Peris, Hereditarily hypercyclic operators, Journal of Functioanl Analysis 167 (1999), 94–112. | es_ES |
dc.description.references | J. Bonet, F. Martínez-Giménez and A. Peris, A Banach space wich admits no chaotic operator, The Bulletin of the London Mathematical Society 33 (2001), 196–198. | es_ES |
dc.description.references | M. De la Rosa, L. Frerick, S. Grivaux and A. Peris, Chaos on Fréchet spaces with unconditional basis, preprint. | es_ES |
dc.description.references | W. T. Gowers, A solution to Banach’s hyperplane problem, The Bulletin of the London Mathematical Society 26 (1994), 523–530. | es_ES |
dc.description.references | W. T. Gowers and B. Maurey, Banach spaces with small spaces of operators, Mathematische Annalen 307 (1997), 543–568. | es_ES |
dc.description.references | W. T. Gowers and B. Maurey, The unconditional basic sequence problem, Journal of the American Mathematical Society 6 (1993), 851–874. | es_ES |
dc.description.references | S. Grivaux, A new class of frequently hypercyclic operators, Indiana University Mathematics Journal, to appear. | es_ES |
dc.description.references | K. G. Grosse-Erdmann and A. Peris, Linear Chaos, Springer-Verlag, Berlin, 2011. | es_ES |
dc.description.references | K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs, New Series, Vol. 20, Clarendon Press, Oxford, 2000. | es_ES |
dc.description.references | S. Shkarin, On the spectrum of frequently hypercyclic operators, Proceedings of the American Mathematical Society 137 (2009), 123–134. | es_ES |