- -

Frequent hypercyclicity, chaos, and unconditional Schauder decompositions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Frequent hypercyclicity, chaos, and unconditional Schauder decompositions

Mostrar el registro completo del ítem

De La Rosa Penilla, M.; Frerick, L.; Grivaux, S.; Peris Manguillot, A. (2012). Frequent hypercyclicity, chaos, and unconditional Schauder decompositions. Israel Journal of Mathematics. 190(1):389-399. https://doi.org/10.1007/s11856-011-0210-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43598

Ficheros en el ítem

Metadatos del ítem

Título: Frequent hypercyclicity, chaos, and unconditional Schauder decompositions
Autor: De la Rosa Penilla, Manuel Frerick, Leonhard Grivaux, Sophie Peris Manguillot, Alfredo
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
We prove that if X is any complex separable infinite-dimensional Banach space with an unconditional Schauder decomposition, X supports an operator T which is chaotic and frequently hypercyclic. This result is extended to ...[+]
Palabras clave: Fréchet spaces , Schauder decompositions , Banach spaces , Frequently hypercyclic operators
Derechos de uso: Reserva de todos los derechos
Fuente:
Israel Journal of Mathematics. (issn: 0021-2172 )
DOI: 10.1007/s11856-011-0210-6
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s11856-011-0210-6
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//MTM2007-64222/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ /
info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/
info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/
Agradecimientos:
This work was partially supported by ANR-Projet Blanc DYNOP, by the MEC and FEDER Projects MTM2007-64222 and MTM2010-14909, and by Generalitat Valenciana Project PROMETEO/2008/101.
Tipo: Artículo

References

S. Ansari, Existence of hypercyclic operators on topological vector spaces, Journal of Functional Analysis 148 (1997), 384–390.

F. Bayart and S. Grivaux, Frequently hypercyclic operators, Transactions of the American Mathematical Society 358 (2006), 5083–5117.

F. Bayart and S. Grivaux, Hypercyclicity and unimodular point spectrum, Journal of Functional Analysis 226 (2005), 281–300. [+]
S. Ansari, Existence of hypercyclic operators on topological vector spaces, Journal of Functional Analysis 148 (1997), 384–390.

F. Bayart and S. Grivaux, Frequently hypercyclic operators, Transactions of the American Mathematical Society 358 (2006), 5083–5117.

F. Bayart and S. Grivaux, Hypercyclicity and unimodular point spectrum, Journal of Functional Analysis 226 (2005), 281–300.

F. Bayart and S. Grivaux, Invariant Gaussian measures for linear operators on Banach spaces and linear dynamics, Proceedings of the London Mathematical Society 94 (2007), 181–210.

F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009.

L. Bernal-González, On hypercyclic operators on Banach spaces, Proceedings of the American Mathematical Society 127 (1999), 1003–1010.

J. Bès and A. Peris, Hereditarily hypercyclic operators, Journal of Functioanl Analysis 167 (1999), 94–112.

J. Bonet, F. Martínez-Giménez and A. Peris, A Banach space wich admits no chaotic operator, The Bulletin of the London Mathematical Society 33 (2001), 196–198.

M. De la Rosa, L. Frerick, S. Grivaux and A. Peris, Chaos on Fréchet spaces with unconditional basis, preprint.

W. T. Gowers, A solution to Banach’s hyperplane problem, The Bulletin of the London Mathematical Society 26 (1994), 523–530.

W. T. Gowers and B. Maurey, Banach spaces with small spaces of operators, Mathematische Annalen 307 (1997), 543–568.

W. T. Gowers and B. Maurey, The unconditional basic sequence problem, Journal of the American Mathematical Society 6 (1993), 851–874.

S. Grivaux, A new class of frequently hypercyclic operators, Indiana University Mathematics Journal, to appear.

K. G. Grosse-Erdmann and A. Peris, Linear Chaos, Springer-Verlag, Berlin, 2011.

K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs, New Series, Vol. 20, Clarendon Press, Oxford, 2000.

S. Shkarin, On the spectrum of frequently hypercyclic operators, Proceedings of the American Mathematical Society 137 (2009), 123–134.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem