- -

Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots

Mostrar el registro completo del ítem

Marín, L.; Vallés Miquel, M.; Soriano Vigueras, Á.; Valera Fernández, Á.; Albertos Pérez, P. (2013). Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots. Sensors. 13(10):14133-14160. doi:10.3390/s131014133

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43735

Ficheros en el ítem

Metadatos del ítem

Título: Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots
Autor: Marín, Leonardo Vallés Miquel, Marina Soriano Vigueras, Ángel Valera Fernández, Ángel Albertos Pérez, Pedro
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor ...[+]
Palabras clave: Mobile robots , Pose estimation , Sensor fusion , Kalman filtering , Inertial sensors , Robot sensing systems , Dynamic model , Embedded systems , Global positioning systems , Event based systems
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (issn: 1424-8220 )
DOI: 10.3390/s131014133
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/s131014133
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2010-20814-C02-02/ES/IDENTIFICACION DE PARAMETROS DINAMICOS EN VEHICULOS LIGEROS Y ROBOTS MOVILES. APLICACION AL CONTROL Y LA NAVEGACION AUTOMATICA/
info:eu-repo/grantAgreement/MINECO//DPI2011-28507-C02-01/ES/DESARROLLO DE CONTROLADORES BASADOS EN MISIONES/
Agradecimientos:
This work has been partially funded by FEDER-CICYT projects with references DPI2011-28507-C02-01 and DPI2010-20814-C02-02, financed by Ministerio de Ciencia e Innovacion (Spain). Also, the financial support from the ...[+]
Tipo: Artículo

References

http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum

http://www.cs.un-c.edu/welch/kalman/kalmanIntro.html

Julier, S., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3), 477-482. doi:10.1109/9.847726 [+]
http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum

http://www.cs.un-c.edu/welch/kalman/kalmanIntro.html

Julier, S., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3), 477-482. doi:10.1109/9.847726

Pioneer Robots Online Informationhttp://www.mobilerobots.com/ResearchRobots.aspx

Hakyoung Chung, Ojeda, L., & Borenstein, J. (2001). Accurate mobile robot dead-reckoning with a precision-calibrated fiber-optic gyroscope. IEEE Transactions on Robotics and Automation, 17(1), 80-84. doi:10.1109/70.917085

Jingang Yi, Hongpeng Wang, Junjie Zhang, Dezhen Song, Jayasuriya, S., & Jingtai Liu. (2009). Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation. IEEE Transactions on Robotics, 25(5), 1087-1097. doi:10.1109/tro.2009.2026506

Hyun, D., Yang, H. S., Park, H.-S., & Kim, H.-J. (2010). Dead-reckoning sensor system and tracking algorithm for 3-D pipeline mapping. Mechatronics, 20(2), 213-223. doi:10.1016/j.mechatronics.2009.11.009

Losada, C., Mazo, M., Palazuelos, S., Pizarro, D., & Marrón, M. (2010). Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots. Sensors, 10(4), 3261-3279. doi:10.3390/s100403261

Fuchs, C., Aschenbruck, N., Martini, P., & Wieneke, M. (2011). Indoor tracking for mission critical scenarios: A survey. Pervasive and Mobile Computing, 7(1), 1-15. doi:10.1016/j.pmcj.2010.07.001

Skog, I., & Handel, P. (2009). In-Car Positioning and Navigation Technologies—A Survey. IEEE Transactions on Intelligent Transportation Systems, 10(1), 4-21. doi:10.1109/tits.2008.2011712

Kim, S. J., & Kim, B. K. (2013). Dynamic Ultrasonic Hybrid Localization System for Indoor Mobile Robots. IEEE Transactions on Industrial Electronics, 60(10), 4562-4573. doi:10.1109/tie.2012.2216235

Boccadoro, M., Martinelli, F., & Pagnottelli, S. (2010). Constrained and quantized Kalman filtering for an RFID robot localization problem. Autonomous Robots, 29(3-4), 235-251. doi:10.1007/s10514-010-9194-z

Madhavan, R., Fregene, K., & Parker, L. E. (2004). Distributed Cooperative Outdoor Multirobot Localization and Mapping. Autonomous Robots, 17(1), 23-39. doi:10.1023/b:auro.0000032936.24187.41

Yunchun Yang, & Farrell, J. A. (2003). Magnetometer and differential carrier phase GPS-aided INS for advanced vehicle control. IEEE Transactions on Robotics and Automation, 19(2), 269-282. doi:10.1109/tra.2003.809591

Zhang, T., & Xu, X. (2012). A new method of seamless land navigation for GPS/INS integrated system. Measurement, 45(4), 691-701. doi:10.1016/j.measurement.2011.12.021

Shen, Z., Georgy, J., Korenberg, M. J., & Noureldin, A. (2011). Low cost two dimension navigation using an augmented Kalman filter/Fast Orthogonal Search module for the integration of reduced inertial sensor system and Global Positioning System. Transportation Research Part C: Emerging Technologies, 19(6), 1111-1132. doi:10.1016/j.trc.2011.01.001

Kotecha, J. H., & Djuric, P. M. (2003). Gaussian particle filtering. IEEE Transactions on Signal Processing, 51(10), 2592-2601. doi:10.1109/tsp.2003.816758

Seyboth, G. S., Dimarogonas, D. V., & Johansson, K. H. (2013). Event-based broadcasting for multi-agent average consensus. Automatica, 49(1), 245-252. doi:10.1016/j.automatica.2012.08.042

Guinaldo, M., Fábregas, E., Farias, G., Dormido-Canto, S., Chaos, D., Sánchez, J., & Dormido, S. (2013). A Mobile Robots Experimental Environment with Event-Based Wireless Communication. Sensors, 13(7), 9396-9413. doi:10.3390/s130709396

Meng, X., & Chen, T. (2013). Event based agreement protocols for multi-agent networks. Automatica, 49(7), 2125-2132. doi:10.1016/j.automatica.2013.03.002

Campion, G., Bastin, G., & Dandrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47-62. doi:10.1109/70.481750

Ward, C. C., & Iagnemma, K. (2008). A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain. IEEE Transactions on Robotics, 24(4), 821-831. doi:10.1109/tro.2008.924945

Zohar, I., Ailon, A., & Rabinovici, R. (2011). Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: Trajectory tracking and related application. Robotics and Autonomous Systems, 59(6), 343-353. doi:10.1016/j.robot.2010.12.001

De La Cruz, C., & Carelli, R. (2008). Dynamic model based formation control and obstacle avoidance of multi-robot systems. Robotica, 26(3), 345-356. doi:10.1017/s0263574707004092

Attia, H. A. (2005). Dynamic model of multi-rigid-body systems based on particle dynamics with recursive approach. Journal of Applied Mathematics, 2005(4), 365-382. doi:10.1155/jam.2005.365

LEGO NXT Mindsensorshttp://www.mindsensors.com

LEGO NXT HiTechnic Sensorshttp://www.hitechnic.com/sensors

LEGO 9V Technic Motors Compared Characteristicshttp://wwwphilohome.com/motors/motorcomp.htm

IG-500N: GPS Aided Miniature INShttp://www.sbg-systems.com/products/ig500n-miniature-ins-gps

IGEPv2 Boardhttp://www.isee.biz/products/igep-processor-boards/igepv2-dm3730

EKF/UKF Toolbox for Matlab V1.3http://www.lce.hut.fi/research/mm/ekfukf/

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem