Mostrar el registro sencillo del ítem
dc.contributor.author | Marín, Leonardo | es_ES |
dc.contributor.author | Vallés Miquel, Marina | es_ES |
dc.contributor.author | Soriano Vigueras, Ángel | es_ES |
dc.contributor.author | Valera Fernández, Ángel | es_ES |
dc.contributor.author | Albertos Pérez, Pedro | es_ES |
dc.date.accessioned | 2014-10-30T15:40:17Z | |
dc.date.available | 2014-10-30T15:40:17Z | |
dc.date.issued | 2013-10 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10251/43735 | |
dc.description.abstract | This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments. | es_ES |
dc.description.sponsorship | This work has been partially funded by FEDER-CICYT projects with references DPI2011-28507-C02-01 and DPI2010-20814-C02-02, financed by Ministerio de Ciencia e Innovacion (Spain). Also, the financial support from the University of Costa Rica is greatly appreciated. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Mobile robots | es_ES |
dc.subject | Pose estimation | es_ES |
dc.subject | Sensor fusion | es_ES |
dc.subject | Kalman filtering | es_ES |
dc.subject | Inertial sensors | es_ES |
dc.subject | Robot sensing systems | es_ES |
dc.subject | Dynamic model | es_ES |
dc.subject | Embedded systems | es_ES |
dc.subject | Global positioning systems | es_ES |
dc.subject | Event based systems | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s131014133 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20814-C02-02/ES/IDENTIFICACION DE PARAMETROS DINAMICOS EN VEHICULOS LIGEROS Y ROBOTS MOVILES. APLICACION AL CONTROL Y LA NAVEGACION AUTOMATICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2011-28507-C02-01/ES/DESARROLLO DE CONTROLADORES BASADOS EN MISIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Marín, L.; Vallés Miquel, M.; Soriano Vigueras, Á.; Valera Fernández, Á.; Albertos Pérez, P. (2013). Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots. Sensors. 13(10):14133-14160. doi:10.3390/s131014133 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/s131014133 | es_ES |
dc.description.upvformatpinicio | 14133 | es_ES |
dc.description.upvformatpfin | 14160 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 251648 | |
dc.identifier.pmid | 24152933 | en_EN |
dc.identifier.pmcid | PMC3859113 | en_EN |
dc.contributor.funder | Universidad de Costa Rica | es_ES |
dc.description.references | http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum | es_ES |
dc.description.references | http://www.cs.un-c.edu/welch/kalman/kalmanIntro.html | es_ES |
dc.description.references | Julier, S., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3), 477-482. doi:10.1109/9.847726 | es_ES |
dc.description.references | Pioneer Robots Online Informationhttp://www.mobilerobots.com/ResearchRobots.aspx | es_ES |
dc.description.references | Hakyoung Chung, Ojeda, L., & Borenstein, J. (2001). Accurate mobile robot dead-reckoning with a precision-calibrated fiber-optic gyroscope. IEEE Transactions on Robotics and Automation, 17(1), 80-84. doi:10.1109/70.917085 | es_ES |
dc.description.references | Jingang Yi, Hongpeng Wang, Junjie Zhang, Dezhen Song, Jayasuriya, S., & Jingtai Liu. (2009). Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation. IEEE Transactions on Robotics, 25(5), 1087-1097. doi:10.1109/tro.2009.2026506 | es_ES |
dc.description.references | Hyun, D., Yang, H. S., Park, H.-S., & Kim, H.-J. (2010). Dead-reckoning sensor system and tracking algorithm for 3-D pipeline mapping. Mechatronics, 20(2), 213-223. doi:10.1016/j.mechatronics.2009.11.009 | es_ES |
dc.description.references | Losada, C., Mazo, M., Palazuelos, S., Pizarro, D., & Marrón, M. (2010). Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots. Sensors, 10(4), 3261-3279. doi:10.3390/s100403261 | es_ES |
dc.description.references | Fuchs, C., Aschenbruck, N., Martini, P., & Wieneke, M. (2011). Indoor tracking for mission critical scenarios: A survey. Pervasive and Mobile Computing, 7(1), 1-15. doi:10.1016/j.pmcj.2010.07.001 | es_ES |
dc.description.references | Skog, I., & Handel, P. (2009). In-Car Positioning and Navigation Technologies—A Survey. IEEE Transactions on Intelligent Transportation Systems, 10(1), 4-21. doi:10.1109/tits.2008.2011712 | es_ES |
dc.description.references | Kim, S. J., & Kim, B. K. (2013). Dynamic Ultrasonic Hybrid Localization System for Indoor Mobile Robots. IEEE Transactions on Industrial Electronics, 60(10), 4562-4573. doi:10.1109/tie.2012.2216235 | es_ES |
dc.description.references | Boccadoro, M., Martinelli, F., & Pagnottelli, S. (2010). Constrained and quantized Kalman filtering for an RFID robot localization problem. Autonomous Robots, 29(3-4), 235-251. doi:10.1007/s10514-010-9194-z | es_ES |
dc.description.references | Madhavan, R., Fregene, K., & Parker, L. E. (2004). Distributed Cooperative Outdoor Multirobot Localization and Mapping. Autonomous Robots, 17(1), 23-39. doi:10.1023/b:auro.0000032936.24187.41 | es_ES |
dc.description.references | Yunchun Yang, & Farrell, J. A. (2003). Magnetometer and differential carrier phase GPS-aided INS for advanced vehicle control. IEEE Transactions on Robotics and Automation, 19(2), 269-282. doi:10.1109/tra.2003.809591 | es_ES |
dc.description.references | Zhang, T., & Xu, X. (2012). A new method of seamless land navigation for GPS/INS integrated system. Measurement, 45(4), 691-701. doi:10.1016/j.measurement.2011.12.021 | es_ES |
dc.description.references | Shen, Z., Georgy, J., Korenberg, M. J., & Noureldin, A. (2011). Low cost two dimension navigation using an augmented Kalman filter/Fast Orthogonal Search module for the integration of reduced inertial sensor system and Global Positioning System. Transportation Research Part C: Emerging Technologies, 19(6), 1111-1132. doi:10.1016/j.trc.2011.01.001 | es_ES |
dc.description.references | Kotecha, J. H., & Djuric, P. M. (2003). Gaussian particle filtering. IEEE Transactions on Signal Processing, 51(10), 2592-2601. doi:10.1109/tsp.2003.816758 | es_ES |
dc.description.references | Seyboth, G. S., Dimarogonas, D. V., & Johansson, K. H. (2013). Event-based broadcasting for multi-agent average consensus. Automatica, 49(1), 245-252. doi:10.1016/j.automatica.2012.08.042 | es_ES |
dc.description.references | Guinaldo, M., Fábregas, E., Farias, G., Dormido-Canto, S., Chaos, D., Sánchez, J., & Dormido, S. (2013). A Mobile Robots Experimental Environment with Event-Based Wireless Communication. Sensors, 13(7), 9396-9413. doi:10.3390/s130709396 | es_ES |
dc.description.references | Meng, X., & Chen, T. (2013). Event based agreement protocols for multi-agent networks. Automatica, 49(7), 2125-2132. doi:10.1016/j.automatica.2013.03.002 | es_ES |
dc.description.references | Campion, G., Bastin, G., & Dandrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47-62. doi:10.1109/70.481750 | es_ES |
dc.description.references | Ward, C. C., & Iagnemma, K. (2008). A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain. IEEE Transactions on Robotics, 24(4), 821-831. doi:10.1109/tro.2008.924945 | es_ES |
dc.description.references | Zohar, I., Ailon, A., & Rabinovici, R. (2011). Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: Trajectory tracking and related application. Robotics and Autonomous Systems, 59(6), 343-353. doi:10.1016/j.robot.2010.12.001 | es_ES |
dc.description.references | De La Cruz, C., & Carelli, R. (2008). Dynamic model based formation control and obstacle avoidance of multi-robot systems. Robotica, 26(3), 345-356. doi:10.1017/s0263574707004092 | es_ES |
dc.description.references | Attia, H. A. (2005). Dynamic model of multi-rigid-body systems based on particle dynamics with recursive approach. Journal of Applied Mathematics, 2005(4), 365-382. doi:10.1155/jam.2005.365 | es_ES |
dc.description.references | LEGO NXT Mindsensorshttp://www.mindsensors.com | es_ES |
dc.description.references | LEGO NXT HiTechnic Sensorshttp://www.hitechnic.com/sensors | es_ES |
dc.description.references | LEGO 9V Technic Motors Compared Characteristicshttp://wwwphilohome.com/motors/motorcomp.htm | es_ES |
dc.description.references | IG-500N: GPS Aided Miniature INShttp://www.sbg-systems.com/products/ig500n-miniature-ins-gps | es_ES |
dc.description.references | IGEPv2 Boardhttp://www.isee.biz/products/igep-processor-boards/igepv2-dm3730 | es_ES |
dc.description.references | EKF/UKF Toolbox for Matlab V1.3http://www.lce.hut.fi/research/mm/ekfukf/ | es_ES |