- -

Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marín, Leonardo es_ES
dc.contributor.author Vallés Miquel, Marina es_ES
dc.contributor.author Soriano Vigueras, Ángel es_ES
dc.contributor.author Valera Fernández, Ángel es_ES
dc.contributor.author Albertos Pérez, Pedro es_ES
dc.date.accessioned 2014-10-30T15:40:17Z
dc.date.available 2014-10-30T15:40:17Z
dc.date.issued 2013-10
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/43735
dc.description.abstract This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments. es_ES
dc.description.sponsorship This work has been partially funded by FEDER-CICYT projects with references DPI2011-28507-C02-01 and DPI2010-20814-C02-02, financed by Ministerio de Ciencia e Innovacion (Spain). Also, the financial support from the University of Costa Rica is greatly appreciated. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mobile robots es_ES
dc.subject Pose estimation es_ES
dc.subject Sensor fusion es_ES
dc.subject Kalman filtering es_ES
dc.subject Inertial sensors es_ES
dc.subject Robot sensing systems es_ES
dc.subject Dynamic model es_ES
dc.subject Embedded systems es_ES
dc.subject Global positioning systems es_ES
dc.subject Event based systems es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s131014133
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20814-C02-02/ES/IDENTIFICACION DE PARAMETROS DINAMICOS EN VEHICULOS LIGEROS Y ROBOTS MOVILES. APLICACION AL CONTROL Y LA NAVEGACION AUTOMATICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2011-28507-C02-01/ES/DESARROLLO DE CONTROLADORES BASADOS EN MISIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Marín, L.; Vallés Miquel, M.; Soriano Vigueras, Á.; Valera Fernández, Á.; Albertos Pérez, P. (2013). Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots. Sensors. 13(10):14133-14160. doi:10.3390/s131014133 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s131014133 es_ES
dc.description.upvformatpinicio 14133 es_ES
dc.description.upvformatpfin 14160 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 251648
dc.identifier.pmid 24152933 en_EN
dc.identifier.pmcid PMC3859113 en_EN
dc.contributor.funder Universidad de Costa Rica es_ES
dc.description.references http://en.wikibooks.org/wiki/Cyberbotics'_Robot_Curriculum es_ES
dc.description.references http://www.cs.un-c.edu/welch/kalman/kalmanIntro.html es_ES
dc.description.references Julier, S., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3), 477-482. doi:10.1109/9.847726 es_ES
dc.description.references Pioneer Robots Online Informationhttp://www.mobilerobots.com/ResearchRobots.aspx es_ES
dc.description.references Hakyoung Chung, Ojeda, L., & Borenstein, J. (2001). Accurate mobile robot dead-reckoning with a precision-calibrated fiber-optic gyroscope. IEEE Transactions on Robotics and Automation, 17(1), 80-84. doi:10.1109/70.917085 es_ES
dc.description.references Jingang Yi, Hongpeng Wang, Junjie Zhang, Dezhen Song, Jayasuriya, S., & Jingtai Liu. (2009). Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation. IEEE Transactions on Robotics, 25(5), 1087-1097. doi:10.1109/tro.2009.2026506 es_ES
dc.description.references Hyun, D., Yang, H. S., Park, H.-S., & Kim, H.-J. (2010). Dead-reckoning sensor system and tracking algorithm for 3-D pipeline mapping. Mechatronics, 20(2), 213-223. doi:10.1016/j.mechatronics.2009.11.009 es_ES
dc.description.references Losada, C., Mazo, M., Palazuelos, S., Pizarro, D., & Marrón, M. (2010). Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots. Sensors, 10(4), 3261-3279. doi:10.3390/s100403261 es_ES
dc.description.references Fuchs, C., Aschenbruck, N., Martini, P., & Wieneke, M. (2011). Indoor tracking for mission critical scenarios: A survey. Pervasive and Mobile Computing, 7(1), 1-15. doi:10.1016/j.pmcj.2010.07.001 es_ES
dc.description.references Skog, I., & Handel, P. (2009). In-Car Positioning and Navigation Technologies—A Survey. IEEE Transactions on Intelligent Transportation Systems, 10(1), 4-21. doi:10.1109/tits.2008.2011712 es_ES
dc.description.references Kim, S. J., & Kim, B. K. (2013). Dynamic Ultrasonic Hybrid Localization System for Indoor Mobile Robots. IEEE Transactions on Industrial Electronics, 60(10), 4562-4573. doi:10.1109/tie.2012.2216235 es_ES
dc.description.references Boccadoro, M., Martinelli, F., & Pagnottelli, S. (2010). Constrained and quantized Kalman filtering for an RFID robot localization problem. Autonomous Robots, 29(3-4), 235-251. doi:10.1007/s10514-010-9194-z es_ES
dc.description.references Madhavan, R., Fregene, K., & Parker, L. E. (2004). Distributed Cooperative Outdoor Multirobot Localization and Mapping. Autonomous Robots, 17(1), 23-39. doi:10.1023/b:auro.0000032936.24187.41 es_ES
dc.description.references Yunchun Yang, & Farrell, J. A. (2003). Magnetometer and differential carrier phase GPS-aided INS for advanced vehicle control. IEEE Transactions on Robotics and Automation, 19(2), 269-282. doi:10.1109/tra.2003.809591 es_ES
dc.description.references Zhang, T., & Xu, X. (2012). A new method of seamless land navigation for GPS/INS integrated system. Measurement, 45(4), 691-701. doi:10.1016/j.measurement.2011.12.021 es_ES
dc.description.references Shen, Z., Georgy, J., Korenberg, M. J., & Noureldin, A. (2011). Low cost two dimension navigation using an augmented Kalman filter/Fast Orthogonal Search module for the integration of reduced inertial sensor system and Global Positioning System. Transportation Research Part C: Emerging Technologies, 19(6), 1111-1132. doi:10.1016/j.trc.2011.01.001 es_ES
dc.description.references Kotecha, J. H., & Djuric, P. M. (2003). Gaussian particle filtering. IEEE Transactions on Signal Processing, 51(10), 2592-2601. doi:10.1109/tsp.2003.816758 es_ES
dc.description.references Seyboth, G. S., Dimarogonas, D. V., & Johansson, K. H. (2013). Event-based broadcasting for multi-agent average consensus. Automatica, 49(1), 245-252. doi:10.1016/j.automatica.2012.08.042 es_ES
dc.description.references Guinaldo, M., Fábregas, E., Farias, G., Dormido-Canto, S., Chaos, D., Sánchez, J., & Dormido, S. (2013). A Mobile Robots Experimental Environment with Event-Based Wireless Communication. Sensors, 13(7), 9396-9413. doi:10.3390/s130709396 es_ES
dc.description.references Meng, X., & Chen, T. (2013). Event based agreement protocols for multi-agent networks. Automatica, 49(7), 2125-2132. doi:10.1016/j.automatica.2013.03.002 es_ES
dc.description.references Campion, G., Bastin, G., & Dandrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47-62. doi:10.1109/70.481750 es_ES
dc.description.references Ward, C. C., & Iagnemma, K. (2008). A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain. IEEE Transactions on Robotics, 24(4), 821-831. doi:10.1109/tro.2008.924945 es_ES
dc.description.references Zohar, I., Ailon, A., & Rabinovici, R. (2011). Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: Trajectory tracking and related application. Robotics and Autonomous Systems, 59(6), 343-353. doi:10.1016/j.robot.2010.12.001 es_ES
dc.description.references De La Cruz, C., & Carelli, R. (2008). Dynamic model based formation control and obstacle avoidance of multi-robot systems. Robotica, 26(3), 345-356. doi:10.1017/s0263574707004092 es_ES
dc.description.references Attia, H. A. (2005). Dynamic model of multi-rigid-body systems based on particle dynamics with recursive approach. Journal of Applied Mathematics, 2005(4), 365-382. doi:10.1155/jam.2005.365 es_ES
dc.description.references LEGO NXT Mindsensorshttp://www.mindsensors.com es_ES
dc.description.references LEGO NXT HiTechnic Sensorshttp://www.hitechnic.com/sensors es_ES
dc.description.references LEGO 9V Technic Motors Compared Characteristicshttp://wwwphilohome.com/motors/motorcomp.htm es_ES
dc.description.references IG-500N: GPS Aided Miniature INShttp://www.sbg-systems.com/products/ig500n-miniature-ins-gps es_ES
dc.description.references IGEPv2 Boardhttp://www.isee.biz/products/igep-processor-boards/igepv2-dm3730 es_ES
dc.description.references EKF/UKF Toolbox for Matlab V1.3http://www.lce.hut.fi/research/mm/ekfukf/ es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem