- -

Effect of nanopore geometry on ion current rectification

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Effect of nanopore geometry on ion current rectification

Show full item record

Apel, PY.; Blonskaya, IV.; Orelovitch, OL.; Ramirez Hoyos, P.; Sartowska, BA. (2011). Effect of nanopore geometry on ion current rectification. Nanotechnology. 22(175302). https://doi.org/10.1088/0957-4484/22/17/175302

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/44598

Files in this item

Item Metadata

Title: Effect of nanopore geometry on ion current rectification
Author: Apel, Pavel Yu Blonskaya, Irina V. Orelovitch, Oleg L. Ramirez Hoyos, Patricio Sartowska, Bozena A.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
We present the results of systematic studies of ion current rectification performed on artificial asymmetric nanopores with different geometries and dimensions. The nanopores are fabricated by the ion track etching method ...[+]
Subjects: Alkali concentrations , Alkaline solutions , Different geometry , Etching time , Experimental data , Field emission scanning electron microscopy , Ion currents , Ion track etching , Poisson-Nernst-Planck equations , Pore geometry , Pore length , Rectification ratio , Systematic study , Tip geometry , Electric rectifiers , Etching , Geometry , Ions , Scanning electron microscopy , Surface active agents , Nanopores
Copyrigths: Cerrado
Source:
Nanotechnology. (issn: 0957-4484 ) (eissn: 1361-6528 )
DOI: 10.1088/0957-4484/22/17/175302
Publisher:
IOP Publishing: Hybrid Open Access
Publisher version: http://dx.doi.org/10.1088/0957-4484/22/17/175302
Project ID:
info:eu-repo/grantAgreement/MICINN//MAT2009-07747/ES/Fenomenos De Transporte En Nanoporos Sinteticos Con Nuevas Propiedades Funcionales: Diseño De Nuevos Procesos/
Thanks:
The authors thank O M Ivanov for the irradiation of the polymer foils with accelerated ions. The help of V A Kuzmin with the calculations is appreciated. PR thanks the Ministerio de Ciencia e Innovacion (MCINN-Spain, project ...[+]
Type: Artículo

References

Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839

Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j

Choi, Y., Baker, L. A., Hillebrenner, H., & Martin, C. R. (2006). Biosensing with conically shaped nanopores and nanotubes. Physical Chemistry Chemical Physics, 8(43), 4976. doi:10.1039/b607360c [+]
Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839

Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j

Choi, Y., Baker, L. A., Hillebrenner, H., & Martin, C. R. (2006). Biosensing with conically shaped nanopores and nanotubes. Physical Chemistry Chemical Physics, 8(43), 4976. doi:10.1039/b607360c

Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875

Rapid switching of ion current in narrow pores: implications for biological ion channels. (1993). Proceedings of the Royal Society of London. Series B: Biological Sciences, 252(1335), 187-192. doi:10.1098/rspb.1993.0064

Pasternak, C. A., Bashford, C. L., Korchev, Y. E., Rostovtseva, T. K., & Lev, A. A. (1993). Modulation of surface flow by divalent cations and protons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 77(2), 119-124. doi:10.1016/0927-7757(93)80108-q

Rostovtseva, T. K., Bashford, C. L., Alder, G. M., Hill, G. N., McGiffert, C., Apel, P. Y., … Pasternak, C. A. (1996). Diffusion through Narrow Pores: Movement of Ions, Water and Nonelectrolytes through Track-etched PETP Membranes. Journal of Membrane Biology, 151(1), 29-43. doi:10.1007/s002329900055

Korchev, Y. E., Bashford, C. L., Alder, G. M., Apel, P. Y., Edmonds, D. T., Lev, A. A., … Pasternak, C. A. (1997). A novel explanation for fluctuations of ion current through narrow pores. The FASEB Journal, 11(7), 600-608. doi:10.1096/fasebj.11.7.9212084

Spohr, R. (2005). Status of ion track technology—Prospects of single tracks. Radiation Measurements, 40(2-6), 191-202. doi:10.1016/j.radmeas.2005.03.008

Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4

Siwy, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., … Korchev, Y. E. (2002). Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters (EPL), 60(3), 349-355. doi:10.1209/epl/i2002-00271-3

Siwy, Z., Apel, P., Baur, D., Dobrev, D. D., Korchev, Y. E., Neumann, R., … Voss, K.-O. (2003). Preparation of synthetic nanopores with transport properties analogous to biological channels. Surface Science, 532-535, 1061-1066. doi:10.1016/s0039-6028(03)00448-5

Woermann, D. (2002). Analysis of non-ohmic electrical current–voltage characteristic of membranes carrying a single track-etched conical pore. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(4), 458-462. doi:10.1016/s0168-583x(02)00956-4

Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103

Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c

Siwy, Z., Kosińska, I. D., Fuliński, A., & Martin, C. R. (2005). Asymmetric Diffusion through Synthetic Nanopores. Physical Review Letters, 94(4). doi:10.1103/physrevlett.94.048102

Ali, M., Mafe, S., Ramirez, P., Neumann, R., & Ensinger, W. (2009). Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains. Langmuir, 25(20), 11993-11997. doi:10.1021/la902792f

Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797

Harrell, C. C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape. Small, 2(2), 194-198. doi:10.1002/smll.200500196

Scopece, P., Baker, L. A., Ugo, P., & Martin, C. R. (2006). Conical nanopore membranes: solvent shaping of nanopores. Nanotechnology, 17(15), 3951-3956. doi:10.1088/0957-4484/17/15/057

Guo, W., Xue, J., Wang, L., & Wang, Y. (2008). Controllable etching of heavy ion tracks with organic solvent addition in etchant. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(12-13), 3095-3099. doi:10.1016/j.nimb.2008.03.169

Ramírez, P., Gómez, V., Cervera, J., Schiedt, B., & Mafé, S. (2007). Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of Chemical Physics, 126(19), 194703. doi:10.1063/1.2735608

Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471

Wang, X., Xue, J., Wang, L., Guo, W., Zhang, W., Wang, Y., … Ouyang, Q. (2007). How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. Journal of Physics D: Applied Physics, 40(22), 7077-7084. doi:10.1088/0022-3727/40/22/032

Liu, Q., Wang, Y., Guo, W., Ji, H., Xue, J., & Ouyang, Q. (2007). Asymmetric properties of ion transport in a charged conical nanopore. Physical Review E, 75(5). doi:10.1103/physreve.75.051201

Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Orelovitch, O. L., Presz, A., & Sartowska, B. A. (2007). Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology, 18(30), 305302. doi:10.1088/0957-4484/18/30/305302

Constantin, D., & Siwy, Z. S. (2007). Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Physical Review E, 76(4). doi:10.1103/physreve.76.041202

Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b

Kosińska, I. D., Goychuk, I., Kostur, M., Schmid, G., & Hänggi, P. (2008). Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77(3). doi:10.1103/physreve.77.031131

Vlassiouk, I., Smirnov, S., & Siwy, Z. (2008). Nanofluidic Ionic Diodes. Comparison of Analytical and Numerical Solutions. ACS Nano, 2(8), 1589-1602. doi:10.1021/nn800306u

Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707

Qian, S., Joo, S. W., Ai, Y., Cheney, M. A., & Hou, W. (2009). Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores. Journal of Colloid and Interface Science, 329(2), 376-383. doi:10.1016/j.jcis.2008.10.012

Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., & Dmitriev, S. N. (2009). Diode-like ion-track asymmetric nanopores: Some alternative methods of fabrication. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(6), 1023-1027. doi:10.1016/j.nimb.2009.02.012

Kovarik, M. L., Zhou, K., & Jacobson, S. C. (2009). Effect of Conical Nanopore Diameter on Ion Current Rectification. The Journal of Physical Chemistry B, 113(49), 15960-15966. doi:10.1021/jp9076189

Fink, D., Vacík, J., Hnatowicz, V., Muñoz, G. H., Alfonta, L., & Klinkovich, I. (2010). Funnel-type etched ion tracks in polymers. Radiation Effects and Defects in Solids, 165(5), 343-361. doi:10.1080/10420151003743020

Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2008). Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society, 130(48), 16351-16357. doi:10.1021/ja8071258

Xia, F., Guo, W., Mao, Y., Hou, X., Xue, J., Xia, H., … Jiang, L. (2008). Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 130(26), 8345-8350. doi:10.1021/ja800266p

Kalman, E. B., Sudre, O., Vlassiouk, I., & Siwy, Z. S. (2008). Control of ionic transport through gated single conical nanopores. Analytical and Bioanalytical Chemistry, 394(2), 413-419. doi:10.1007/s00216-008-2545-3

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Guo, W., Xia, H., Xia, F., Hou, X., Cao, L., Wang, L., … Jiang, L. (2010). Current Rectification in Temperature-Responsive Single Nanopores. ChemPhysChem, 11(4), 859-864. doi:10.1002/cphc.200900989

Perry, J. M., Zhou, K., Harms, Z. D., & Jacobson, S. C. (2010). Ion Transport in Nanofluidic Funnels. ACS Nano, 4(7), 3897-3902. doi:10.1021/nn100692z

Wei, C., Bard, A. J., & Feldberg, S. W. (1997). Current Rectification at Quartz Nanopipet Electrodes. Analytical Chemistry, 69(22), 4627-4633. doi:10.1021/ac970551g

Umehara, S., Pourmand, N., Webb, C. D., Davis, R. W., Yasuda, K., & Karhanek, M. (2006). Current Rectification with Poly-l-Lysine-Coated Quartz Nanopipettes. Nano Letters, 6(11), 2486-2492. doi:10.1021/nl061681k

Zhou, K., Kovarik, M. L., & Jacobson, S. C. (2008). Surface-Charge Induced Ion Depletion and Sample Stacking near Single Nanopores in Microfluidic Devices. Journal of the American Chemical Society, 130(27), 8614-8616. doi:10.1021/ja802692x

Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312

Apel, P. Y., Blonskaya, I. ., Didyk, A. Y., Dmitriev, S. ., Orelovitch, O. ., Root, D., … Vutsadakis, V. . (2001). Surfactant-enhanced control of track-etch pore morphology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 179(1), 55-62. doi:10.1016/s0168-583x(00)00691-1

Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Root, D., Vutsadakis, V., & Dmitriev, S. N. (2003). Effect of nanosized surfactant molecules on the etching of ion tracks: New degrees of freedom in design of pore shape. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 209, 329-334. doi:10.1016/s0168-583x(02)02057-8

Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Mamonova, T. I., Orelovitch, O. L., Sartowska, B., & Yamauchi, Y. (2008). Surfactant-controlled etching of ion track nanopores and its practical applications in membrane technology. Radiation Measurements, 43, S552-S559. doi:10.1016/j.radmeas.2008.04.057

Orelovich, O. L., & Apel’, P. Y. (2001). Instruments and Experimental Techniques, 44(1), 111-114. doi:10.1023/a:1004101621297

Wehling, A., Pohl, W. H., Gerke, B., Kipp, S., & Walla, P. J. (2008). Generation of Nanopores Down to 10 nm for Use in Deep-Nulling Interferometry. ChemPhysChem, 9(2), 327-331. doi:10.1002/cphc.200700606

Apel, P., Schulz, A., Spohr, R., Trautmann, C., & Vutsadakis, V. (1997). Tracks of very heavy ions in polymers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 131(1-4), 55-63. doi:10.1016/s0168-583x(97)00389-3

Tretyakova, S., Apel, P., Jolos, L., Mamonova, T., & Shirkova, V. (1980). A STUDY OF THE REGISTRATION PROPERTIES OF POLYETHYLENE-TEREPHTHALATE. Solid State Nuclear Track Detectors, 283-289. doi:10.1016/b978-0-08-025029-8.50039-1

Apel, P. Y., & Pretzsch, G. (1986). Investigation of the radial pore-etching rate in a plastic track detector as a function of the local damage density around the ion path. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 11(1-2), 45-53. doi:10.1016/1359-0189(86)90019-1

Geismann, C., & Ulbricht, M. (2005). Photoreactive Functionalization of Poly(ethylene terephthalate) Track-Etched Pore Surfaces with ?Smart? Polymer Systems. Macromolecular Chemistry and Physics, 206(2), 268-281. doi:10.1002/macp.200400374

Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., … Azzaroni, O. (2010). Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 132(24), 8338-8348. doi:10.1021/ja101014y

Déjardin, P., Vasina, E. N., Berezkin, V. V., Sobolev, V. D., & Volkov, V. I. (2005). Streaming Potential in Cylindrical Pores of Poly(ethylene terephthalate) Track-Etched Membranes:  Variation of Apparent ζ Potential with Pore Radius. Langmuir, 21(10), 4680-4685. doi:10.1021/la046913e

Xue, J., Xie, Y., Yan, Y., Ke, J., & Wang, Y. (2009). Surface charge density of the track-etched nanopores in polyethylene terephthalate foils. Biomicrofluidics, 3(2), 022408. doi:10.1063/1.3130988

Apel, P., Spohr, R., Trautmann, C., & Vutsadakis, V. (1999). Track structure in polyethylene terephthalate irradiated by heavy ions: Let dependence of track diameter. Radiation Measurements, 31(1-6), 51-56. doi:10.1016/s1350-4487(99)00075-x

Apel, P. Y., & Fink, D. (2004). Ion-Track Etching. Springer Series in Materials Science, 147-202. doi:10.1007/978-3-662-10608-2_4

ORELOVICH, O. L., SARTOWSKA, B. A., PRESZ, A., & APEL, P. Y. (2010). Analysis of channel shapes in track membranes by scanning electron microscopy. Journal of Microscopy, 237(3), 404-406. doi:10.1111/j.1365-2818.2009.03272.x

Levchenko, A. A., Argo, B. P., Vidu, R., Talroze, R. V., & Stroeve, P. (2002). Kinetics of Sodium Dodecyl Sulfate Adsorption on and Desorption from Self-Assembled Monolayers Measured by Surface Plasmon Resonance. Langmuir, 18(22), 8464-8471. doi:10.1021/la0202576

Bisio, P. ., Cartledge, J. ., Keesom, W. ., & Radke, C. . (1980). Molecular orientation of aqueous surfactants on a hydrophobic solid. Journal of Colloid and Interface Science, 78(1), 225-234. doi:10.1016/0021-9797(80)90512-3

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record