Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839
Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j
Choi, Y., Baker, L. A., Hillebrenner, H., & Martin, C. R. (2006). Biosensing with conically shaped nanopores and nanotubes. Physical Chemistry Chemical Physics, 8(43), 4976. doi:10.1039/b607360c
[+]
Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839
Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j
Choi, Y., Baker, L. A., Hillebrenner, H., & Martin, C. R. (2006). Biosensing with conically shaped nanopores and nanotubes. Physical Chemistry Chemical Physics, 8(43), 4976. doi:10.1039/b607360c
Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875
Rapid switching of ion current in narrow pores: implications for biological ion channels. (1993). Proceedings of the Royal Society of London. Series B: Biological Sciences, 252(1335), 187-192. doi:10.1098/rspb.1993.0064
Pasternak, C. A., Bashford, C. L., Korchev, Y. E., Rostovtseva, T. K., & Lev, A. A. (1993). Modulation of surface flow by divalent cations and protons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 77(2), 119-124. doi:10.1016/0927-7757(93)80108-q
Rostovtseva, T. K., Bashford, C. L., Alder, G. M., Hill, G. N., McGiffert, C., Apel, P. Y., … Pasternak, C. A. (1996). Diffusion through Narrow Pores: Movement of Ions, Water and Nonelectrolytes through Track-etched PETP Membranes. Journal of Membrane Biology, 151(1), 29-43. doi:10.1007/s002329900055
Korchev, Y. E., Bashford, C. L., Alder, G. M., Apel, P. Y., Edmonds, D. T., Lev, A. A., … Pasternak, C. A. (1997). A novel explanation for fluctuations of ion current through narrow pores. The FASEB Journal, 11(7), 600-608. doi:10.1096/fasebj.11.7.9212084
Spohr, R. (2005). Status of ion track technology—Prospects of single tracks. Radiation Measurements, 40(2-6), 191-202. doi:10.1016/j.radmeas.2005.03.008
Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4
Siwy, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., … Korchev, Y. E. (2002). Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters (EPL), 60(3), 349-355. doi:10.1209/epl/i2002-00271-3
Siwy, Z., Apel, P., Baur, D., Dobrev, D. D., Korchev, Y. E., Neumann, R., … Voss, K.-O. (2003). Preparation of synthetic nanopores with transport properties analogous to biological channels. Surface Science, 532-535, 1061-1066. doi:10.1016/s0039-6028(03)00448-5
Woermann, D. (2002). Analysis of non-ohmic electrical current–voltage characteristic of membranes carrying a single track-etched conical pore. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(4), 458-462. doi:10.1016/s0168-583x(02)00956-4
Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103
Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c
Siwy, Z., Kosińska, I. D., Fuliński, A., & Martin, C. R. (2005). Asymmetric Diffusion through Synthetic Nanopores. Physical Review Letters, 94(4). doi:10.1103/physrevlett.94.048102
Ali, M., Mafe, S., Ramirez, P., Neumann, R., & Ensinger, W. (2009). Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains. Langmuir, 25(20), 11993-11997. doi:10.1021/la902792f
Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797
Harrell, C. C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape. Small, 2(2), 194-198. doi:10.1002/smll.200500196
Scopece, P., Baker, L. A., Ugo, P., & Martin, C. R. (2006). Conical nanopore membranes: solvent shaping of nanopores. Nanotechnology, 17(15), 3951-3956. doi:10.1088/0957-4484/17/15/057
Guo, W., Xue, J., Wang, L., & Wang, Y. (2008). Controllable etching of heavy ion tracks with organic solvent addition in etchant. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(12-13), 3095-3099. doi:10.1016/j.nimb.2008.03.169
Ramírez, P., Gómez, V., Cervera, J., Schiedt, B., & Mafé, S. (2007). Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of Chemical Physics, 126(19), 194703. doi:10.1063/1.2735608
Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471
Wang, X., Xue, J., Wang, L., Guo, W., Zhang, W., Wang, Y., … Ouyang, Q. (2007). How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. Journal of Physics D: Applied Physics, 40(22), 7077-7084. doi:10.1088/0022-3727/40/22/032
Liu, Q., Wang, Y., Guo, W., Ji, H., Xue, J., & Ouyang, Q. (2007). Asymmetric properties of ion transport in a charged conical nanopore. Physical Review E, 75(5). doi:10.1103/physreve.75.051201
Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Orelovitch, O. L., Presz, A., & Sartowska, B. A. (2007). Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology, 18(30), 305302. doi:10.1088/0957-4484/18/30/305302
Constantin, D., & Siwy, Z. S. (2007). Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Physical Review E, 76(4). doi:10.1103/physreve.76.041202
Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b
Kosińska, I. D., Goychuk, I., Kostur, M., Schmid, G., & Hänggi, P. (2008). Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77(3). doi:10.1103/physreve.77.031131
Vlassiouk, I., Smirnov, S., & Siwy, Z. (2008). Nanofluidic Ionic Diodes. Comparison of Analytical and Numerical Solutions. ACS Nano, 2(8), 1589-1602. doi:10.1021/nn800306u
Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707
Qian, S., Joo, S. W., Ai, Y., Cheney, M. A., & Hou, W. (2009). Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores. Journal of Colloid and Interface Science, 329(2), 376-383. doi:10.1016/j.jcis.2008.10.012
Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., & Dmitriev, S. N. (2009). Diode-like ion-track asymmetric nanopores: Some alternative methods of fabrication. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(6), 1023-1027. doi:10.1016/j.nimb.2009.02.012
Kovarik, M. L., Zhou, K., & Jacobson, S. C. (2009). Effect of Conical Nanopore Diameter on Ion Current Rectification. The Journal of Physical Chemistry B, 113(49), 15960-15966. doi:10.1021/jp9076189
Fink, D., Vacík, J., Hnatowicz, V., Muñoz, G. H., Alfonta, L., & Klinkovich, I. (2010). Funnel-type etched ion tracks in polymers. Radiation Effects and Defects in Solids, 165(5), 343-361. doi:10.1080/10420151003743020
Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2008). Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society, 130(48), 16351-16357. doi:10.1021/ja8071258
Xia, F., Guo, W., Mao, Y., Hou, X., Xue, J., Xia, H., … Jiang, L. (2008). Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 130(26), 8345-8350. doi:10.1021/ja800266p
Kalman, E. B., Sudre, O., Vlassiouk, I., & Siwy, Z. S. (2008). Control of ionic transport through gated single conical nanopores. Analytical and Bioanalytical Chemistry, 394(2), 413-419. doi:10.1007/s00216-008-2545-3
Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f
Guo, W., Xia, H., Xia, F., Hou, X., Cao, L., Wang, L., … Jiang, L. (2010). Current Rectification in Temperature-Responsive Single Nanopores. ChemPhysChem, 11(4), 859-864. doi:10.1002/cphc.200900989
Perry, J. M., Zhou, K., Harms, Z. D., & Jacobson, S. C. (2010). Ion Transport in Nanofluidic Funnels. ACS Nano, 4(7), 3897-3902. doi:10.1021/nn100692z
Wei, C., Bard, A. J., & Feldberg, S. W. (1997). Current Rectification at Quartz Nanopipet Electrodes. Analytical Chemistry, 69(22), 4627-4633. doi:10.1021/ac970551g
Umehara, S., Pourmand, N., Webb, C. D., Davis, R. W., Yasuda, K., & Karhanek, M. (2006). Current Rectification with Poly-l-Lysine-Coated Quartz Nanopipettes. Nano Letters, 6(11), 2486-2492. doi:10.1021/nl061681k
Zhou, K., Kovarik, M. L., & Jacobson, S. C. (2008). Surface-Charge Induced Ion Depletion and Sample Stacking near Single Nanopores in Microfluidic Devices. Journal of the American Chemical Society, 130(27), 8614-8616. doi:10.1021/ja802692x
Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312
Apel, P. Y., Blonskaya, I. ., Didyk, A. Y., Dmitriev, S. ., Orelovitch, O. ., Root, D., … Vutsadakis, V. . (2001). Surfactant-enhanced control of track-etch pore morphology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 179(1), 55-62. doi:10.1016/s0168-583x(00)00691-1
Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Root, D., Vutsadakis, V., & Dmitriev, S. N. (2003). Effect of nanosized surfactant molecules on the etching of ion tracks: New degrees of freedom in design of pore shape. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 209, 329-334. doi:10.1016/s0168-583x(02)02057-8
Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Mamonova, T. I., Orelovitch, O. L., Sartowska, B., & Yamauchi, Y. (2008). Surfactant-controlled etching of ion track nanopores and its practical applications in membrane technology. Radiation Measurements, 43, S552-S559. doi:10.1016/j.radmeas.2008.04.057
Orelovich, O. L., & Apel’, P. Y. (2001). Instruments and Experimental Techniques, 44(1), 111-114. doi:10.1023/a:1004101621297
Wehling, A., Pohl, W. H., Gerke, B., Kipp, S., & Walla, P. J. (2008). Generation of Nanopores Down to 10 nm for Use in Deep-Nulling Interferometry. ChemPhysChem, 9(2), 327-331. doi:10.1002/cphc.200700606
Apel, P., Schulz, A., Spohr, R., Trautmann, C., & Vutsadakis, V. (1997). Tracks of very heavy ions in polymers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 131(1-4), 55-63. doi:10.1016/s0168-583x(97)00389-3
Tretyakova, S., Apel, P., Jolos, L., Mamonova, T., & Shirkova, V. (1980). A STUDY OF THE REGISTRATION PROPERTIES OF POLYETHYLENE-TEREPHTHALATE. Solid State Nuclear Track Detectors, 283-289. doi:10.1016/b978-0-08-025029-8.50039-1
Apel, P. Y., & Pretzsch, G. (1986). Investigation of the radial pore-etching rate in a plastic track detector as a function of the local damage density around the ion path. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 11(1-2), 45-53. doi:10.1016/1359-0189(86)90019-1
Geismann, C., & Ulbricht, M. (2005). Photoreactive Functionalization of Poly(ethylene terephthalate) Track-Etched Pore Surfaces with ?Smart? Polymer Systems. Macromolecular Chemistry and Physics, 206(2), 268-281. doi:10.1002/macp.200400374
Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., … Azzaroni, O. (2010). Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 132(24), 8338-8348. doi:10.1021/ja101014y
Déjardin, P., Vasina, E. N., Berezkin, V. V., Sobolev, V. D., & Volkov, V. I. (2005). Streaming Potential in Cylindrical Pores of Poly(ethylene terephthalate) Track-Etched Membranes: Variation of Apparent ζ Potential with Pore Radius. Langmuir, 21(10), 4680-4685. doi:10.1021/la046913e
Xue, J., Xie, Y., Yan, Y., Ke, J., & Wang, Y. (2009). Surface charge density of the track-etched nanopores in polyethylene terephthalate foils. Biomicrofluidics, 3(2), 022408. doi:10.1063/1.3130988
Apel, P., Spohr, R., Trautmann, C., & Vutsadakis, V. (1999). Track structure in polyethylene terephthalate irradiated by heavy ions: Let dependence of track diameter. Radiation Measurements, 31(1-6), 51-56. doi:10.1016/s1350-4487(99)00075-x
Apel, P. Y., & Fink, D. (2004). Ion-Track Etching. Springer Series in Materials Science, 147-202. doi:10.1007/978-3-662-10608-2_4
ORELOVICH, O. L., SARTOWSKA, B. A., PRESZ, A., & APEL, P. Y. (2010). Analysis of channel shapes in track membranes by scanning electron microscopy. Journal of Microscopy, 237(3), 404-406. doi:10.1111/j.1365-2818.2009.03272.x
Levchenko, A. A., Argo, B. P., Vidu, R., Talroze, R. V., & Stroeve, P. (2002). Kinetics of Sodium Dodecyl Sulfate Adsorption on and Desorption from Self-Assembled Monolayers Measured by Surface Plasmon Resonance. Langmuir, 18(22), 8464-8471. doi:10.1021/la0202576
Bisio, P. ., Cartledge, J. ., Keesom, W. ., & Radke, C. . (1980). Molecular orientation of aqueous surfactants on a hydrophobic solid. Journal of Colloid and Interface Science, 78(1), 225-234. doi:10.1016/0021-9797(80)90512-3
[-]