- -

Effect of nanopore geometry on ion current rectification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of nanopore geometry on ion current rectification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Apel, Pavel Yu es_ES
dc.contributor.author Blonskaya, Irina V. es_ES
dc.contributor.author Orelovitch, Oleg L. es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Sartowska, Bozena A.
dc.date.accessioned 2014-11-24T09:47:56Z
dc.date.available 2014-11-24T09:47:56Z
dc.date.issued 2011-03-16
dc.identifier.issn 0957-4484
dc.identifier.uri http://hdl.handle.net/10251/44598
dc.description.abstract We present the results of systematic studies of ion current rectification performed on artificial asymmetric nanopores with different geometries and dimensions. The nanopores are fabricated by the ion track etching method using surfactant-doped alkaline solutions. By varying the alkali concentration in the etchant and the etching time, control over the pore profile and dimensions is achieved. The pore geometry is characterized in detail using field-emission scanning electron microscopy. The dependence of the ion current rectification ratio on the pore length, tip diameter, and the degree of pore taper is analysed. The experimental data are compared to the calculations based on the Poisson-Nernst-Planck equations. A strong effect of the tip geometry on the diode-like behaviour is confirmed. © 2011 IOP Publishing Ltd. es_ES
dc.description.sponsorship The authors thank O M Ivanov for the irradiation of the polymer foils with accelerated ions. The help of V A Kuzmin with the calculations is appreciated. PR thanks the Ministerio de Ciencia e Innovacion (MCINN-Spain, project MAT2009-07747) for financial support. en_EN
dc.language Español es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Nanotechnology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alkali concentrations es_ES
dc.subject Alkaline solutions es_ES
dc.subject Different geometry es_ES
dc.subject Etching time es_ES
dc.subject Experimental data es_ES
dc.subject Field emission scanning electron microscopy es_ES
dc.subject Ion currents es_ES
dc.subject Ion track etching es_ES
dc.subject Poisson-Nernst-Planck equations es_ES
dc.subject Pore geometry es_ES
dc.subject Pore length es_ES
dc.subject Rectification ratio es_ES
dc.subject Systematic study es_ES
dc.subject Tip geometry es_ES
dc.subject Electric rectifiers es_ES
dc.subject Etching es_ES
dc.subject Geometry es_ES
dc.subject Ions es_ES
dc.subject Scanning electron microscopy es_ES
dc.subject Surface active agents es_ES
dc.subject Nanopores es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Effect of nanopore geometry on ion current rectification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0957-4484/22/17/175302
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-07747/ES/Fenomenos De Transporte En Nanoporos Sinteticos Con Nuevas Propiedades Funcionales: Diseño De Nuevos Procesos/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Apel, PY.; Blonskaya, IV.; Orelovitch, OL.; Ramirez Hoyos, P.; Sartowska, BA. (2011). Effect of nanopore geometry on ion current rectification. Nanotechnology. 22(175302). https://doi.org/10.1088/0957-4484/22/17/175302 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0957-4484/22/17/175302 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 175302 es_ES
dc.relation.senia 213900
dc.identifier.eissn 1361-6528
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839 es_ES
dc.description.references Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j es_ES
dc.description.references Choi, Y., Baker, L. A., Hillebrenner, H., & Martin, C. R. (2006). Biosensing with conically shaped nanopores and nanotubes. Physical Chemistry Chemical Physics, 8(43), 4976. doi:10.1039/b607360c es_ES
dc.description.references Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875 es_ES
dc.description.references Rapid switching of ion current in narrow pores: implications for biological ion channels. (1993). Proceedings of the Royal Society of London. Series B: Biological Sciences, 252(1335), 187-192. doi:10.1098/rspb.1993.0064 es_ES
dc.description.references Pasternak, C. A., Bashford, C. L., Korchev, Y. E., Rostovtseva, T. K., & Lev, A. A. (1993). Modulation of surface flow by divalent cations and protons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 77(2), 119-124. doi:10.1016/0927-7757(93)80108-q es_ES
dc.description.references Rostovtseva, T. K., Bashford, C. L., Alder, G. M., Hill, G. N., McGiffert, C., Apel, P. Y., … Pasternak, C. A. (1996). Diffusion through Narrow Pores: Movement of Ions, Water and Nonelectrolytes through Track-etched PETP Membranes. Journal of Membrane Biology, 151(1), 29-43. doi:10.1007/s002329900055 es_ES
dc.description.references Korchev, Y. E., Bashford, C. L., Alder, G. M., Apel, P. Y., Edmonds, D. T., Lev, A. A., … Pasternak, C. A. (1997). A novel explanation for fluctuations of ion current through narrow pores. The FASEB Journal, 11(7), 600-608. doi:10.1096/fasebj.11.7.9212084 es_ES
dc.description.references Spohr, R. (2005). Status of ion track technology—Prospects of single tracks. Radiation Measurements, 40(2-6), 191-202. doi:10.1016/j.radmeas.2005.03.008 es_ES
dc.description.references Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4 es_ES
dc.description.references Siwy, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., … Korchev, Y. E. (2002). Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters (EPL), 60(3), 349-355. doi:10.1209/epl/i2002-00271-3 es_ES
dc.description.references Siwy, Z., Apel, P., Baur, D., Dobrev, D. D., Korchev, Y. E., Neumann, R., … Voss, K.-O. (2003). Preparation of synthetic nanopores with transport properties analogous to biological channels. Surface Science, 532-535, 1061-1066. doi:10.1016/s0039-6028(03)00448-5 es_ES
dc.description.references Woermann, D. (2002). Analysis of non-ohmic electrical current–voltage characteristic of membranes carrying a single track-etched conical pore. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(4), 458-462. doi:10.1016/s0168-583x(02)00956-4 es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103 es_ES
dc.description.references Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c es_ES
dc.description.references Siwy, Z., Kosińska, I. D., Fuliński, A., & Martin, C. R. (2005). Asymmetric Diffusion through Synthetic Nanopores. Physical Review Letters, 94(4). doi:10.1103/physrevlett.94.048102 es_ES
dc.description.references Ali, M., Mafe, S., Ramirez, P., Neumann, R., & Ensinger, W. (2009). Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains. Langmuir, 25(20), 11993-11997. doi:10.1021/la902792f es_ES
dc.description.references Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797 es_ES
dc.description.references Harrell, C. C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape. Small, 2(2), 194-198. doi:10.1002/smll.200500196 es_ES
dc.description.references Scopece, P., Baker, L. A., Ugo, P., & Martin, C. R. (2006). Conical nanopore membranes: solvent shaping of nanopores. Nanotechnology, 17(15), 3951-3956. doi:10.1088/0957-4484/17/15/057 es_ES
dc.description.references Guo, W., Xue, J., Wang, L., & Wang, Y. (2008). Controllable etching of heavy ion tracks with organic solvent addition in etchant. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(12-13), 3095-3099. doi:10.1016/j.nimb.2008.03.169 es_ES
dc.description.references Ramírez, P., Gómez, V., Cervera, J., Schiedt, B., & Mafé, S. (2007). Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of Chemical Physics, 126(19), 194703. doi:10.1063/1.2735608 es_ES
dc.description.references Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471 es_ES
dc.description.references Wang, X., Xue, J., Wang, L., Guo, W., Zhang, W., Wang, Y., … Ouyang, Q. (2007). How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. Journal of Physics D: Applied Physics, 40(22), 7077-7084. doi:10.1088/0022-3727/40/22/032 es_ES
dc.description.references Liu, Q., Wang, Y., Guo, W., Ji, H., Xue, J., & Ouyang, Q. (2007). Asymmetric properties of ion transport in a charged conical nanopore. Physical Review E, 75(5). doi:10.1103/physreve.75.051201 es_ES
dc.description.references Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Orelovitch, O. L., Presz, A., & Sartowska, B. A. (2007). Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology, 18(30), 305302. doi:10.1088/0957-4484/18/30/305302 es_ES
dc.description.references Constantin, D., & Siwy, Z. S. (2007). Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Physical Review E, 76(4). doi:10.1103/physreve.76.041202 es_ES
dc.description.references Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b es_ES
dc.description.references Kosińska, I. D., Goychuk, I., Kostur, M., Schmid, G., & Hänggi, P. (2008). Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77(3). doi:10.1103/physreve.77.031131 es_ES
dc.description.references Vlassiouk, I., Smirnov, S., & Siwy, Z. (2008). Nanofluidic Ionic Diodes. Comparison of Analytical and Numerical Solutions. ACS Nano, 2(8), 1589-1602. doi:10.1021/nn800306u es_ES
dc.description.references Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707 es_ES
dc.description.references Qian, S., Joo, S. W., Ai, Y., Cheney, M. A., & Hou, W. (2009). Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores. Journal of Colloid and Interface Science, 329(2), 376-383. doi:10.1016/j.jcis.2008.10.012 es_ES
dc.description.references Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., & Dmitriev, S. N. (2009). Diode-like ion-track asymmetric nanopores: Some alternative methods of fabrication. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(6), 1023-1027. doi:10.1016/j.nimb.2009.02.012 es_ES
dc.description.references Kovarik, M. L., Zhou, K., & Jacobson, S. C. (2009). Effect of Conical Nanopore Diameter on Ion Current Rectification. The Journal of Physical Chemistry B, 113(49), 15960-15966. doi:10.1021/jp9076189 es_ES
dc.description.references Fink, D., Vacík, J., Hnatowicz, V., Muñoz, G. H., Alfonta, L., & Klinkovich, I. (2010). Funnel-type etched ion tracks in polymers. Radiation Effects and Defects in Solids, 165(5), 343-361. doi:10.1080/10420151003743020 es_ES
dc.description.references Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2008). Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society, 130(48), 16351-16357. doi:10.1021/ja8071258 es_ES
dc.description.references Xia, F., Guo, W., Mao, Y., Hou, X., Xue, J., Xia, H., … Jiang, L. (2008). Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 130(26), 8345-8350. doi:10.1021/ja800266p es_ES
dc.description.references Kalman, E. B., Sudre, O., Vlassiouk, I., & Siwy, Z. S. (2008). Control of ionic transport through gated single conical nanopores. Analytical and Bioanalytical Chemistry, 394(2), 413-419. doi:10.1007/s00216-008-2545-3 es_ES
dc.description.references Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f es_ES
dc.description.references Guo, W., Xia, H., Xia, F., Hou, X., Cao, L., Wang, L., … Jiang, L. (2010). Current Rectification in Temperature-Responsive Single Nanopores. ChemPhysChem, 11(4), 859-864. doi:10.1002/cphc.200900989 es_ES
dc.description.references Perry, J. M., Zhou, K., Harms, Z. D., & Jacobson, S. C. (2010). Ion Transport in Nanofluidic Funnels. ACS Nano, 4(7), 3897-3902. doi:10.1021/nn100692z es_ES
dc.description.references Wei, C., Bard, A. J., & Feldberg, S. W. (1997). Current Rectification at Quartz Nanopipet Electrodes. Analytical Chemistry, 69(22), 4627-4633. doi:10.1021/ac970551g es_ES
dc.description.references Umehara, S., Pourmand, N., Webb, C. D., Davis, R. W., Yasuda, K., & Karhanek, M. (2006). Current Rectification with Poly-l-Lysine-Coated Quartz Nanopipettes. Nano Letters, 6(11), 2486-2492. doi:10.1021/nl061681k es_ES
dc.description.references Zhou, K., Kovarik, M. L., & Jacobson, S. C. (2008). Surface-Charge Induced Ion Depletion and Sample Stacking near Single Nanopores in Microfluidic Devices. Journal of the American Chemical Society, 130(27), 8614-8616. doi:10.1021/ja802692x es_ES
dc.description.references Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312 es_ES
dc.description.references Apel, P. Y., Blonskaya, I. ., Didyk, A. Y., Dmitriev, S. ., Orelovitch, O. ., Root, D., … Vutsadakis, V. . (2001). Surfactant-enhanced control of track-etch pore morphology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 179(1), 55-62. doi:10.1016/s0168-583x(00)00691-1 es_ES
dc.description.references Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Root, D., Vutsadakis, V., & Dmitriev, S. N. (2003). Effect of nanosized surfactant molecules on the etching of ion tracks: New degrees of freedom in design of pore shape. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 209, 329-334. doi:10.1016/s0168-583x(02)02057-8 es_ES
dc.description.references Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Mamonova, T. I., Orelovitch, O. L., Sartowska, B., & Yamauchi, Y. (2008). Surfactant-controlled etching of ion track nanopores and its practical applications in membrane technology. Radiation Measurements, 43, S552-S559. doi:10.1016/j.radmeas.2008.04.057 es_ES
dc.description.references Orelovich, O. L., & Apel’, P. Y. (2001). Instruments and Experimental Techniques, 44(1), 111-114. doi:10.1023/a:1004101621297 es_ES
dc.description.references Wehling, A., Pohl, W. H., Gerke, B., Kipp, S., & Walla, P. J. (2008). Generation of Nanopores Down to 10 nm for Use in Deep-Nulling Interferometry. ChemPhysChem, 9(2), 327-331. doi:10.1002/cphc.200700606 es_ES
dc.description.references Apel, P., Schulz, A., Spohr, R., Trautmann, C., & Vutsadakis, V. (1997). Tracks of very heavy ions in polymers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 131(1-4), 55-63. doi:10.1016/s0168-583x(97)00389-3 es_ES
dc.description.references Tretyakova, S., Apel, P., Jolos, L., Mamonova, T., & Shirkova, V. (1980). A STUDY OF THE REGISTRATION PROPERTIES OF POLYETHYLENE-TEREPHTHALATE. Solid State Nuclear Track Detectors, 283-289. doi:10.1016/b978-0-08-025029-8.50039-1 es_ES
dc.description.references Apel, P. Y., & Pretzsch, G. (1986). Investigation of the radial pore-etching rate in a plastic track detector as a function of the local damage density around the ion path. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 11(1-2), 45-53. doi:10.1016/1359-0189(86)90019-1 es_ES
dc.description.references Geismann, C., & Ulbricht, M. (2005). Photoreactive Functionalization of Poly(ethylene terephthalate) Track-Etched Pore Surfaces with ?Smart? Polymer Systems. Macromolecular Chemistry and Physics, 206(2), 268-281. doi:10.1002/macp.200400374 es_ES
dc.description.references Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., … Azzaroni, O. (2010). Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 132(24), 8338-8348. doi:10.1021/ja101014y es_ES
dc.description.references Déjardin, P., Vasina, E. N., Berezkin, V. V., Sobolev, V. D., & Volkov, V. I. (2005). Streaming Potential in Cylindrical Pores of Poly(ethylene terephthalate) Track-Etched Membranes:  Variation of Apparent ζ Potential with Pore Radius. Langmuir, 21(10), 4680-4685. doi:10.1021/la046913e es_ES
dc.description.references Xue, J., Xie, Y., Yan, Y., Ke, J., & Wang, Y. (2009). Surface charge density of the track-etched nanopores in polyethylene terephthalate foils. Biomicrofluidics, 3(2), 022408. doi:10.1063/1.3130988 es_ES
dc.description.references Apel, P., Spohr, R., Trautmann, C., & Vutsadakis, V. (1999). Track structure in polyethylene terephthalate irradiated by heavy ions: Let dependence of track diameter. Radiation Measurements, 31(1-6), 51-56. doi:10.1016/s1350-4487(99)00075-x es_ES
dc.description.references Apel, P. Y., & Fink, D. (2004). Ion-Track Etching. Springer Series in Materials Science, 147-202. doi:10.1007/978-3-662-10608-2_4 es_ES
dc.description.references ORELOVICH, O. L., SARTOWSKA, B. A., PRESZ, A., & APEL, P. Y. (2010). Analysis of channel shapes in track membranes by scanning electron microscopy. Journal of Microscopy, 237(3), 404-406. doi:10.1111/j.1365-2818.2009.03272.x es_ES
dc.description.references Levchenko, A. A., Argo, B. P., Vidu, R., Talroze, R. V., & Stroeve, P. (2002). Kinetics of Sodium Dodecyl Sulfate Adsorption on and Desorption from Self-Assembled Monolayers Measured by Surface Plasmon Resonance. Langmuir, 18(22), 8464-8471. doi:10.1021/la0202576 es_ES
dc.description.references Bisio, P. ., Cartledge, J. ., Keesom, W. ., & Radke, C. . (1980). Molecular orientation of aqueous surfactants on a hydrophobic solid. Journal of Colloid and Interface Science, 78(1), 225-234. doi:10.1016/0021-9797(80)90512-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem