- -

Chaotic behaviour of birth-and-death models with proliferation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chaotic behaviour of birth-and-death models with proliferation

Mostrar el registro completo del ítem

Aroza, J.; Peris Manguillot, A. (2012). Chaotic behaviour of birth-and-death models with proliferation. Journal of Difference Equations and Applications. 18(4):647-655. https://doi.org/10.1080/10236198.2011.631535

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/44600

Ficheros en el ítem

Metadatos del ítem

Título: Chaotic behaviour of birth-and-death models with proliferation
Autor: Aroza, Javier Peris Manguillot, Alfredo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
In this paper, we will study the chaotic behaviour, in the sense of Devaney, of infinite-dimensional linear systems on Banach spaces, especially we will study the solution C 0-semigroups of operators of these systems. We ...[+]
Palabras clave: Chaotic semigroup , Infinite-dimensional linear systems , Mixing semigroup , Sub-chaotic semigroup , Hypercyclic operators , Semigroups , Criteria , Spaces
Derechos de uso: Cerrado
Fuente:
Journal of Difference Equations and Applications. (issn: 1023-6198 ) (eissn: 1563-5120 )
DOI: 10.1080/10236198.2011.631535
Editorial:
Taylor & Francis
Versión del editor: http://dx.doi.org/10.1080/10236198.2011.631535
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/
info:eu-repo/grantAgreement/GVA//GV%2F2010%2F091/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO%2F2008%2F010/ES/No Informado/
Descripción: This is an Accepted Manuscript of an article published by Taylor & Francis Group in [Journal of Difference Equations and Applications] on [21-11-2012], available online at: http://www.tandfonline.com/10.1080/10236198.2011.631535
Agradecimientos:
This paper is supported in part by MICINN and FEDER, Project MTM2010-14909, and by Generalitat Valenciana, Projects PROMETEO/2008/101 and GV/2010/091. We are indebted to the referees, whose careful remarks produced an ...[+]
Tipo: Artículo

References

Banasiak, J., & Lachowicz, M. (2001). Chaos for a class of linear kinetic models. Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics, 329(6), 439-444. doi:10.1016/s1620-7742(01)01353-8

Banasiak, J., & Moszyński, M. (2005). A generalization of Desch--Schappacher--Webb criteria for chaos. Discrete and Continuous Dynamical Systems, 12(5), 959-972. doi:10.3934/dcds.2005.12.959

Banasiak, J., Lachowicz, M., & Moszynski, M. (2006). Semigroups for Generalized Birth-and-Death Equations in lp Spaces. Semigroup Forum, 73(2), 175-193. doi:10.1007/s00233-006-0621-x [+]
Banasiak, J., & Lachowicz, M. (2001). Chaos for a class of linear kinetic models. Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics, 329(6), 439-444. doi:10.1016/s1620-7742(01)01353-8

Banasiak, J., & Moszyński, M. (2005). A generalization of Desch--Schappacher--Webb criteria for chaos. Discrete and Continuous Dynamical Systems, 12(5), 959-972. doi:10.3934/dcds.2005.12.959

Banasiak, J., Lachowicz, M., & Moszynski, M. (2006). Semigroups for Generalized Birth-and-Death Equations in lp Spaces. Semigroup Forum, 73(2), 175-193. doi:10.1007/s00233-006-0621-x

Banasiak, J., Lachowicz, M., & Moszyński, M. (2007). Chaotic behavior of semigroups related to the process of gene amplification–deamplification with cell proliferation. Mathematical Biosciences, 206(2), 200-215. doi:10.1016/j.mbs.2005.08.004

Bayart, F., & Grivaux, S. (2006). Transactions of the American Mathematical Society, 358(11), 5083-5118. doi:10.1090/s0002-9947-06-04019-0

Bermúdez, T., Bonilla, A., & Peris, A. (2004). On hypercyclicity and supercyclicity criteria. Bulletin of the Australian Mathematical Society, 70(1), 45-54. doi:10.1017/s0004972700035802

Bermúdez, T., Bonilla, A., Conejero, J. A., & Peris, A. (2005). Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Studia Mathematica, 170(1), 57-75. doi:10.4064/sm170-1-3

Bès, J., & Peris, A. (1999). Hereditarily Hypercyclic Operators. Journal of Functional Analysis, 167(1), 94-112. doi:10.1006/jfan.1999.3437

Conejero, J. A., & Peris, A. (2005). Linear transitivity criteria. Topology and its Applications, 153(5-6), 767-773. doi:10.1016/j.topol.2005.01.009

DESCH, W., SCHAPPACHER, W., & WEBB, G. F. (1997). Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory and Dynamical Systems, 17(4), 793-819. doi:10.1017/s0143385797084976

Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6

Mourchid, S. E. (2006). The Imaginary Point Spectrum and Hypercyclicity. Semigroup Forum, 73(2), 313-316. doi:10.1007/s00233-005-0533-x

Godefroy, G., & Shapiro, J. H. (1991). Operators with dense, invariant, cyclic vector manifolds. Journal of Functional Analysis, 98(2), 229-269. doi:10.1016/0022-1236(91)90078-j

Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1

PROTOPOPESCU, V., & AZMY, Y. Y. (1992). TOPOLOGICAL CHAOS FOR A CLASS OF LINEAR MODELS. Mathematical Models and Methods in Applied Sciences, 02(01), 79-90. doi:10.1142/s0218202592000065

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem