- -

Radiofrequency cardiac ablation with catheters placed on opposing sides of the ventricular wall: Computer modelling comparing bipolar and unipolar modes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radiofrequency cardiac ablation with catheters placed on opposing sides of the ventricular wall: Computer modelling comparing bipolar and unipolar modes

Mostrar el registro completo del ítem

González Suárez, A.; Trujillo Guillen, M.; Koruth, J.; D'avila, A.; Berjano, E. (2014). Radiofrequency cardiac ablation with catheters placed on opposing sides of the ventricular wall: Computer modelling comparing bipolar and unipolar modes. International Journal of Hyperthermia. 30(6):372-384. https://doi.org/10.3109/02656736.2014.949878

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45852

Ficheros en el ítem

Metadatos del ítem

Título: Radiofrequency cardiac ablation with catheters placed on opposing sides of the ventricular wall: Computer modelling comparing bipolar and unipolar modes
Autor: González Suárez, Ana Trujillo Guillen, Macarena Koruth, Jacob d'Avila, Andre Berjano, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
Purpose: The aim of this study was to compare the efficacy of bipolar (BM) vs. unipolar (UM) mode of radiofrequency ablation (RFA) in terms of creating transmural lesions across the interventricular septum (IVS) and ...[+]
Palabras clave: Bipolar ablation , Interventricular septum , Radiofrequency ablation , Unipolar ablation , Ventricular ablation , Ventricular free wall
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Hyperthermia. (issn: 0265-6736 )
DOI: 10.3109/02656736.2014.949878
Editorial:
Informa Healthcare
Versión del editor: http://dx.doi.org/10.3109/02656736.2014.949878
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/
info:eu-repo/grantAgreement/UPV//PAID-06-11-1988/
info:eu-repo/grantAgreement/GVA//ACIF%2F2011%2F194/
Agradecimientos:
This work received financial support from the Spanish 'Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion' (TEC2011-27133-C02-01), and from the Universitat Politecnica de Valencia (PAID-06-11 Ref. 1988). A. ...[+]
Tipo: Artículo

References

SIVAGANGABALAN, G., BARRY, M. A., HUANG, K., LU, J., POULIOPOULOS, J., THOMAS, S. P., … KOVOOR, P. (2010). Bipolar Ablation of the Interventricular Septum is More Efficient at Creating a Transmural Line than Sequential Unipolar Ablation. Pacing and Clinical Electrophysiology, 33(1), 16-26. doi:10.1111/j.1540-8159.2009.02602.x

Nagashima, K., Watanabe, I., Okumura, Y., Ohkubo, K., Kofune, M., Ohya, T., … Hirayama, A. (2011). Lesion Formation by Ventricular Septal Ablation With Irrigated Electrodes. Circulation Journal, 75(3), 565-570. doi:10.1253/circj.cj-10-0870

D’ Avila, A., Houghtaling, C., Gutierrez, P., Vragovic, O., Ruskin, J. N., Josephson, M. E., & Reddy, V. Y. (2004). Catheter Ablation of Ventricular Epicardial Tissue. Circulation, 109(19), 2363-2369. doi:10.1161/01.cir.0000128039.87485.0b [+]
SIVAGANGABALAN, G., BARRY, M. A., HUANG, K., LU, J., POULIOPOULOS, J., THOMAS, S. P., … KOVOOR, P. (2010). Bipolar Ablation of the Interventricular Septum is More Efficient at Creating a Transmural Line than Sequential Unipolar Ablation. Pacing and Clinical Electrophysiology, 33(1), 16-26. doi:10.1111/j.1540-8159.2009.02602.x

Nagashima, K., Watanabe, I., Okumura, Y., Ohkubo, K., Kofune, M., Ohya, T., … Hirayama, A. (2011). Lesion Formation by Ventricular Septal Ablation With Irrigated Electrodes. Circulation Journal, 75(3), 565-570. doi:10.1253/circj.cj-10-0870

D’ Avila, A., Houghtaling, C., Gutierrez, P., Vragovic, O., Ruskin, J. N., Josephson, M. E., & Reddy, V. Y. (2004). Catheter Ablation of Ventricular Epicardial Tissue. Circulation, 109(19), 2363-2369. doi:10.1161/01.cir.0000128039.87485.0b

Dukkipati, S. R., d’ Avila, A., Soejima, K., Bala, R., Inada, K., Singh, S., … Reddy, V. Y. (2011). Long-Term Outcomes of Combined Epicardial and Endocardial Ablation of Monomorphic Ventricular Tachycardia Related to Hypertrophic Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 4(2), 185-194. doi:10.1161/circep.110.957290

Sosa, E., Scanavacca, M., d’ Avila, A., Oliveira, F., & Ramires, J. A. F. (2000). Nonsurgical transthoracic epicardial catheter ablation to treat recurrent ventricular tachycardia occurring late after myocardial infarction. Journal of the American College of Cardiology, 35(6), 1442-1449. doi:10.1016/s0735-1097(00)00606-9

Nagashima, K., Watanabe, I., Okumura, Y., Sonoda, K., Kofune, M., Mano, H., … Hirayama, A. (2012). Epicardial Ablation With Irrigated Electrodes. Circulation Journal, 76(2), 322-327. doi:10.1253/circj.cj-11-0984

Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24

Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045

Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004

HAINES, D. E., & WATSON, D. D. (1989). Tissue Heating During Radiofrequency Catheter Ablation: A Thermodynamic Model and Observations in Isolated Perfused and Superfused Canine Right Ventricular Free Wall. Pacing and Clinical Electrophysiology, 12(6), 962-976. doi:10.1111/j.1540-8159.1989.tb05034.x

Zhao, G., Zhang, H.-F., Guo, X.-J., Luo, D.-W., & Gao, D.-Y. (2007). Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery. Medical Engineering & Physics, 29(2), 205-215. doi:10.1016/j.medengphy.2006.03.005

Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27

Whitney, J., Carswell, W., & Rylander, N. (2013). Arrhenius parameter determination as a function of heating method and cellular microenvironment based on spatial cell viability analysis. International Journal of Hyperthermia, 29(4), 281-295. doi:10.3109/02656736.2013.802375

Pearce, J. A. (2013). Comparative analysis of mathematical models of cell death and thermal damage processes. International Journal of Hyperthermia, 29(4), 262-280. doi:10.3109/02656736.2013.786140

Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107

Watanabe, I., Nuo, M., Okumura, Y., Ohkubo, K., Ashino, S., Kofune, M., … Hirayama, A. (2010). Temperature-Controlled Cooled-Tip Radiofrequency Ablation in Left Ventricular Myocardium. International Heart Journal, 51(3), 193-198. doi:10.1536/ihj.51.193

Yokoyama, K., Nakagawa, H., Wittkampf, F. H. M., Pitha, J. V., Lazzara, R., & Jackman, W. M. (2006). Comparison of Electrode Cooling Between Internal and Open Irrigation in Radiofrequency Ablation Lesion Depth and Incidence of Thrombus and Steam Pop. Circulation, 113(1), 11-19. doi:10.1161/circulationaha.105.540062

Kumar, P., Mounsey, J. P., Gehi, A. K., Schwartz, J. D., & Chung, E. H. (2013). Use of a closed loop irrigated catheter in epicardial ablation of ventricular tachycardia. Journal of Interventional Cardiac Electrophysiology, 38(1), 35-42. doi:10.1007/s10840-013-9799-1

Schutt, D., Berjano, E. J., & Haemmerich, D. (2009). Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: A computational modeling study. International Journal of Hyperthermia, 25(2), 99-107. doi:10.1080/02656730802563051

Gopalakrishnan, J. (2002). A Mathematical Model for Irrigated Epicardial Radiofrequency Ablation. Annals of Biomedical Engineering, 30(7), 884-893. doi:10.1114/1.1507845

Suárez, A. G., Hornero, F., & Berjano, E. J. (2010). Mathematical Modeling of Epicardial RF Ablation of Atrial Tissue with Overlying Epicardial Fat. The Open Biomedical Engineering Journal, 4(1), 47-55. doi:10.2174/1874120701004020047

Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488

Koruth, J. S., Dukkipati, S., Miller, M. A., Neuzil, P., d’ Avila, A., & Reddy, V. Y. (2012). Bipolar irrigated radiofrequency ablation: A therapeutic option for refractory intramural atrial and ventricular tachycardia circuits. Heart Rhythm, 9(12), 1932-1941. doi:10.1016/j.hrthm.2012.08.001

González-Suárez, A., Trujillo, M., Burdío, F., Andaluz, A., & Berjano, E. (2012). Feasibility study of an internally cooled bipolar applicator for RF coagulation of hepatic tissue: Experimental and computational study. International Journal of Hyperthermia, 28(7), 663-673. doi:10.3109/02656736.2012.716900

Agah, R., Gandjbakhche, A. H., Motamedi, M., Nossal, R., & Bonner, R. F. (1996). Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration. IEEE Transactions on Biomedical Engineering, 43(8), 839-846. doi:10.1109/10.508546

Haines, D. E. (2011). Letter by Haines Regarding Article, «Direct Measurement of the Lethal Isotherm for Radiofrequency Ablation of Myocardial Tissue». Circulation: Arrhythmia and Electrophysiology, 4(5). doi:10.1161/circep.111.965459

Wood, M., Goldberg, S., Lau, M., Goel, A., Alexander, D., Han, F., & Feinstein, S. (2011). Direct Measurement of the Lethal Isotherm for Radiofrequency Ablation of Myocardial Tissue. Circulation: Arrhythmia and Electrophysiology, 4(3), 373-378. doi:10.1161/circep.110.961169

Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem