- -

Structured parametric epidemic models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structured parametric epidemic models

Mostrar el registro completo del ítem

Cantó Colomina, B.; Coll, C.; Sánchez, E. (2014). Structured parametric epidemic models. International Journal of Computer Mathematics. 91(2):188-197. https://doi.org/10.1080/00207160.2013.800864

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50136

Ficheros en el ítem

Metadatos del ítem

Título: Structured parametric epidemic models
Autor: Cantó Colomina, Begoña Coll, Carmen Sánchez, Elena
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
A stage-structured model for a theoretical epidemic process that incorporates immature, susceptible and infectious individuals in independent stages is formulated. In this analysis, an input interpreted as a birth function ...[+]
Palabras clave: Beverton-Holt function , Basic reproduction number , Equilibrium , Identifiability , Epidemic model
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Computer Mathematics. (issn: 0020-7160 ) (eissn: 1029-0265 )
DOI: 10.1080/00207160.2013.800864
Editorial:
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Versión del editor: http://dx.doi.org/10.1080/00207160.2013.800864
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2010-18228/ES/PROPIEDADES MATRICIALES CON APLICACION A LA TEORIA DE CONTROL/
Agradecimientos:
This work has been partially supported by MTM2010-18228. The authors wish to express their thanks to the reviewers for helpful comments and suggestions.
Tipo: Artículo

References

Allen, L. J. S., & Thrasher, D. B. (1998). The effects of vaccination in an age-dependent model for varicella and herpes zoster. IEEE Transactions on Automatic Control, 43(6), 779-789. doi:10.1109/9.679018

Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2004). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. 2. The Differential-Algebraic Approach. Industrial & Engineering Chemistry Research, 43(5), 1251-1259. doi:10.1021/ie030534j

Boyadjiev, C., & Dimitrova, E. (2005). An iterative method for model parameter identification. Computers & Chemical Engineering, 29(5), 941-948. doi:10.1016/j.compchemeng.2004.08.036 [+]
Allen, L. J. S., & Thrasher, D. B. (1998). The effects of vaccination in an age-dependent model for varicella and herpes zoster. IEEE Transactions on Automatic Control, 43(6), 779-789. doi:10.1109/9.679018

Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2004). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. 2. The Differential-Algebraic Approach. Industrial & Engineering Chemistry Research, 43(5), 1251-1259. doi:10.1021/ie030534j

Boyadjiev, C., & Dimitrova, E. (2005). An iterative method for model parameter identification. Computers & Chemical Engineering, 29(5), 941-948. doi:10.1016/j.compchemeng.2004.08.036

Cantó, B., Coll, C., & Sánchez, E. (2011). Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations. Mathematical Problems in Engineering, 2011, 1-12. doi:10.1155/2011/510519

Cao, H., & Zhou, Y. (2012). The discrete age-structured SEIT model with application to tuberculosis transmission in China. Mathematical and Computer Modelling, 55(3-4), 385-395. doi:10.1016/j.mcm.2011.08.017

Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4). doi:10.1007/bf00178324

Dion, J.-M., Commault, C., & van der Woude, J. (2003). Generic properties and control of linear structured systems: a survey. Automatica, 39(7), 1125-1144. doi:10.1016/s0005-1098(03)00104-3

Emmert, K. E., & Allen, L. J. S. (2004). Population Persistence and Extinction in a Discrete-time, Stage-structured Epidemic Model. Journal of Difference Equations and Applications, 10(13-15), 1177-1199. doi:10.1080/10236190410001654151

Farina, L., & Rinaldi, S. (2000). Positive Linear Systems. doi:10.1002/9781118033029

Van den Hof, J. M. (1998). Structural identifiability of linear compartmental systems. IEEE Transactions on Automatic Control, 43(6), 800-818. doi:10.1109/9.679020

T. Kailath,Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

Li, C.-K., & Schneider, H. (2002). Applications of Perron-Frobenius theory to population dynamics. Journal of Mathematical Biology, 44(5), 450-462. doi:10.1007/s002850100132

Li, X., & Wang, W. (2005). A discrete epidemic model with stage structure☆. Chaos, Solitons & Fractals, 26(3), 947-958. doi:10.1016/j.chaos.2005.01.063

Ma, J., & Earn, D. J. D. (2006). Generality of the Final Size Formula for an Epidemic of a Newly Invading Infectious Disease. Bulletin of Mathematical Biology, 68(3), 679-702. doi:10.1007/s11538-005-9047-7

Wang, W., & Zhao, X.-Q. (2004). An epidemic model in a patchy environment. Mathematical Biosciences, 190(1), 97-112. doi:10.1016/j.mbs.2002.11.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem