- -

Baire property in product spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Baire property in product spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández, Constancio es_ES
dc.contributor.author Rodríguez Medina, Leonardo es_ES
dc.contributor.author Tkachenko, Mikhail G. es_ES
dc.date.accessioned 2015-05-13T12:44:01Z
dc.date.available 2015-05-13T12:44:01Z
dc.date.issued 2015-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/50179
dc.description.abstract [EN] We show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countable $\pi$-weight, for each $i\in I$, then the product space $\prod_{i\in I} X_i$ is Baire. It is also shown that the product of precompact Baire paratopological groups is again a precompact Baire paratopological group. Finally, we focus attention on the so-called \textit{strongly Baire} spaces and prove that some Baire spaces are in fact strongly Baire. es_ES
dc.description.sponsorship The research is partially supported by Consejo Nacional de Ciencias y Tecnolog´ıa (CONACyT), grant CB-2012-01-178103
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Baire space es_ES
dc.subject Strongly Baire space es_ES
dc.subject Skeletal mapping es_ES
dc.subject Banach-Mazur-Choquet game es_ES
dc.subject Paratopological group es_ES
dc.subject Semitopological group es_ES
dc.title Baire property in product spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2015-05-13T09:42:37Z
dc.identifier.doi 10.4995/agt.2015.3439
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//CB-2012-01-178103/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hernández, C.; Rodríguez Medina, L.; Tkachenko, MG. (2015). Baire property in product spaces. Applied General Topology. 16(1):1-13. https://doi.org/10.4995/agt.2015.3439 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2015.3439 es_ES
dc.description.upvformatpinicio 1
dc.description.upvformatpfin 13
dc.type.version info:eu-repo/semantics/publishedVersion
dc.description.volume 16
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México
dc.description.references Arhangel’skii, A. V., & Reznichenko, E. A. (2005). Paratopological and semitopological groups versus topological groups. Topology and its Applications, 151(1-3), 107-119. doi:10.1016/j.topol.2003.08.035 es_ES
dc.description.references T. Banakh and O.Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), pp. 140-152. es_ES
dc.description.references N. Bourbaki, Elements of mathematics. General topology. Part 2, Hermann, Paris, 1966. es_ES
dc.description.references W.Fleissner and K.Kunen, Barely Baire spaces, Fund. Math. 101, no. 3 (1978), 229-240. es_ES
dc.description.references Z. Frolík, Baire spaces and some generalizations of complete metric spaces, Czechoslovak Math. J. 11, no. 86 (1961), 237-248. es_ES
dc.description.references Z. Frolík, Concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11, no. 3 (1961), 381-385. es_ES
dc.description.references Z. Piotrowski, Separate and joint continuity in Baire groups, Tatra Mt. Math. Publ. 14 (1998), 109-116. es_ES
dc.description.references M. Tkachenko, Some results on inverse spectra. II, Comment. Math. Univ. Carolin. 22, no. 4 (1981), 819-841. es_ES
dc.description.references Van Douwen, E. K. (1977). An unbaireable stratifiable space. Proceedings of the American Mathematical Society, 67(2), 324-324. doi:10.1090/s0002-9939-1977-0474220-1 es_ES
dc.description.references White, H. E. (1975). Topological spaces that are $\alpha $-favorable for a player with perfect information. Proceedings of the American Mathematical Society, 50(1), 477-477. doi:10.1090/s0002-9939-1975-0367941-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem