Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández, Constancio | es_ES |
dc.contributor.author | Rodríguez Medina, Leonardo | es_ES |
dc.contributor.author | Tkachenko, Mikhail G. | es_ES |
dc.date.accessioned | 2015-05-13T12:44:01Z | |
dc.date.available | 2015-05-13T12:44:01Z | |
dc.date.issued | 2015-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/50179 | |
dc.description.abstract | [EN] We show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It follows that if $X_i$ is a dense Baire subspace of a product of spaces having countable $\pi$-weight, for each $i\in I$, then the product space $\prod_{i\in I} X_i$ is Baire. It is also shown that the product of precompact Baire paratopological groups is again a precompact Baire paratopological group. Finally, we focus attention on the so-called \textit{strongly Baire} spaces and prove that some Baire spaces are in fact strongly Baire. | es_ES |
dc.description.sponsorship | The research is partially supported by Consejo Nacional de Ciencias y Tecnolog´ıa (CONACyT), grant CB-2012-01-178103 | |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Baire space | es_ES |
dc.subject | Strongly Baire space | es_ES |
dc.subject | Skeletal mapping | es_ES |
dc.subject | Banach-Mazur-Choquet game | es_ES |
dc.subject | Paratopological group | es_ES |
dc.subject | Semitopological group | es_ES |
dc.title | Baire property in product spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2015-05-13T09:42:37Z | |
dc.identifier.doi | 10.4995/agt.2015.3439 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//CB-2012-01-178103/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Hernández, C.; Rodríguez Medina, L.; Tkachenko, MG. (2015). Baire property in product spaces. Applied General Topology. 16(1):1-13. https://doi.org/10.4995/agt.2015.3439 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2015.3439 | es_ES |
dc.description.upvformatpinicio | 1 | |
dc.description.upvformatpfin | 13 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.description.volume | 16 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | |
dc.description.references | Arhangel’skii, A. V., & Reznichenko, E. A. (2005). Paratopological and semitopological groups versus topological groups. Topology and its Applications, 151(1-3), 107-119. doi:10.1016/j.topol.2003.08.035 | es_ES |
dc.description.references | T. Banakh and O.Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), pp. 140-152. | es_ES |
dc.description.references | N. Bourbaki, Elements of mathematics. General topology. Part 2, Hermann, Paris, 1966. | es_ES |
dc.description.references | W.Fleissner and K.Kunen, Barely Baire spaces, Fund. Math. 101, no. 3 (1978), 229-240. | es_ES |
dc.description.references | Z. Frolík, Baire spaces and some generalizations of complete metric spaces, Czechoslovak Math. J. 11, no. 86 (1961), 237-248. | es_ES |
dc.description.references | Z. Frolík, Concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11, no. 3 (1961), 381-385. | es_ES |
dc.description.references | Z. Piotrowski, Separate and joint continuity in Baire groups, Tatra Mt. Math. Publ. 14 (1998), 109-116. | es_ES |
dc.description.references | M. Tkachenko, Some results on inverse spectra. II, Comment. Math. Univ. Carolin. 22, no. 4 (1981), 819-841. | es_ES |
dc.description.references | Van Douwen, E. K. (1977). An unbaireable stratifiable space. Proceedings of the American Mathematical Society, 67(2), 324-324. doi:10.1090/s0002-9939-1977-0474220-1 | es_ES |
dc.description.references | White, H. E. (1975). Topological spaces that are $\alpha $-favorable for a player with perfect information. Proceedings of the American Mathematical Society, 50(1), 477-477. doi:10.1090/s0002-9939-1975-0367941-0 | es_ES |