- -

Baire property in product spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Baire property in product spaces

Mostrar el registro completo del ítem

Hernández, C.; Rodríguez Medina, L.; Tkachenko, MG. (2015). Baire property in product spaces. Applied General Topology. 16(1):1-13. https://doi.org/10.4995/agt.2015.3439

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50179

Ficheros en el ítem

Metadatos del ítem

Título: Baire property in product spaces
Autor: Hernández, Constancio Rodríguez Medina, Leonardo Tkachenko, Mikhail G.
Fecha difusión:
Resumen:
[EN] We show that if a product space $\mathit\Pi$ has countable cellularity, then a dense subspace $X$ of $\mathit\Pi$ is Baire provided that all projections of $X$ to countable subproducts of $\mathit\Pi$ are Baire. It ...[+]
Palabras clave: Baire space , Strongly Baire space , Skeletal mapping , Banach-Mazur-Choquet game , Paratopological group , Semitopological group
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2015.3439
Editorial:
Editorial Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2015.3439
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//CB-2012-01-178103/
Agradecimientos:
The research is partially supported by Consejo Nacional de Ciencias y Tecnolog´ıa (CONACyT), grant CB-2012-01-178103
Tipo: Artículo

References

Arhangel’skii, A. V., & Reznichenko, E. A. (2005). Paratopological and semitopological groups versus topological groups. Topology and its Applications, 151(1-3), 107-119. doi:10.1016/j.topol.2003.08.035

T. Banakh and O.Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), pp. 140-152.

N. Bourbaki, Elements of mathematics. General topology. Part 2, Hermann, Paris, 1966. [+]
Arhangel’skii, A. V., & Reznichenko, E. A. (2005). Paratopological and semitopological groups versus topological groups. Topology and its Applications, 151(1-3), 107-119. doi:10.1016/j.topol.2003.08.035

T. Banakh and O.Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), pp. 140-152.

N. Bourbaki, Elements of mathematics. General topology. Part 2, Hermann, Paris, 1966.

W.Fleissner and K.Kunen, Barely Baire spaces, Fund. Math. 101, no. 3 (1978), 229-240.

Z. Frolík, Baire spaces and some generalizations of complete metric spaces, Czechoslovak Math. J. 11, no. 86 (1961), 237-248.

Z. Frolík, Concerning the invariance of Baire spaces under mappings, Czechoslovak Math. J. 11, no. 3 (1961), 381-385.

Z. Piotrowski, Separate and joint continuity in Baire groups, Tatra Mt. Math. Publ. 14 (1998), 109-116.

M. Tkachenko, Some results on inverse spectra. II, Comment. Math. Univ. Carolin. 22, no. 4 (1981), 819-841.

Van Douwen, E. K. (1977). An unbaireable stratifiable space. Proceedings of the American Mathematical Society, 67(2), 324-324. doi:10.1090/s0002-9939-1977-0474220-1

White, H. E. (1975). Topological spaces that are $\alpha $-favorable for a player with perfect information. Proceedings of the American Mathematical Society, 50(1), 477-477. doi:10.1090/s0002-9939-1975-0367941-0

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem