- -

Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimeters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimeters

Mostrar el registro completo del ítem

Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S.; Gotor Candel, RJ.; Martínez Mañez, R.; Sancenón Galarza, F.; Royo Calvo, S. (2012). Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimeters. European Journal of Organic Chemistry. 2012(33):4937-4946. https://doi.org/10.1002/ejoc.201200570

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51094

Ficheros en el ítem

Metadatos del ítem

Título: Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimeters
Autor: Costero Nieto, Ana María Parra Álvarez, Margarita Gil Grau, Salvador Gotor Candel, Raul Jesús Martínez Mañez, Ramón Sancenón Galarza, Félix Royo Calvo, Santiago
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
A family of triarylcarbinols 1-11 has been synthesised, and the chromogenic behaviour of the members in the presence of nerve-agent simulants diethylcyanophosphonate (DCNP) and diisopropylfluorophosphate (DFP) in acetonitrile ...[+]
Palabras clave: Analytical methods , Chemoselectivity , Dyes , Nerve agent simulants , Sensors , Toxicology
Derechos de uso: Cerrado
Fuente:
European Journal of Organic Chemistry. (issn: 1434-193X ) (eissn: 1099-0690 )
DOI: 10.1002/ejoc.201200570
Editorial:
Wiley-VCH Verlag GmbH & Co.
Versión del editor: http://dx.doi.org/10.1002/ejoc.201200570
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./
info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-03/ES/Sensores Y Remediadores De Agentes Nerviosos Y Simulantes/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
Agradecimientos:
We thank the Spanish Government (projects MAT2009-14564-C04-01 and MAT2009-14564-C04-03) and the Generalitat Valenciana (project PROMETEO/2009/016) for support. R. G. is grateful to the Spanish Government for a fellowship. ...[+]
Tipo: Artículo

References

Chemical Warfare Agents S. M. Somani J. A. Romano r. 2001

Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602

Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013 [+]
Chemical Warfare Agents S. M. Somani J. A. Romano r. 2001

Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602

Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013

Im, H.-J., & Song, K. (2009). Applications of Prompt Gamma Ray Neutron Activation Analysis: Detection of Illicit Materials. Applied Spectroscopy Reviews, 44(4), 317-334. doi:10.1080/05704920902852125

Sohn, H., Létant, S., Sailor, M. J., & Trogler, W. C. (2000). Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer. Journal of the American Chemical Society, 122(22), 5399-5400. doi:10.1021/ja0006200

Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f

Sens. Actuators B

Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720

Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339

Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b

Giordano, B., & Collins, G. (2007). Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. Current Organic Chemistry, 11(3), 255-265. doi:10.2174/138527207779940883

Kang, S., Kim, S., Yang, Y.-K., Bae, S., & Tae, J. (2009). Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron Letters, 50(17), 2010-2012. doi:10.1016/j.tetlet.2009.02.087

Costero, A. M., Parra, M., Gil, S., Gotor, R., Mancini, P. M. E., Martínez-Máñez, R., … Royo, S. (2010). Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chemistry - An Asian Journal, 5(7), 1573-1585. doi:10.1002/asia.201000058

Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie, 122(34), 6081-6084. doi:10.1002/ange.201001088

Zheng, Q., Zhu, Y., Xu, J., Cheng, Z., Li, H., & Li, X. (2012). Fluoroalcohol and fluorinated-phenol derivatives functionalized mesoporous SBA-15 hybrids: high-performance gas sensing toward nerve agent. J. Mater. Chem., 22(5), 2263-2270. doi:10.1039/c1jm14779j

Xi, C., Liu, Z., Kong, L., Hu, X., & Liu, S. (2008). Effects of interaction of folic acid with uranium (VI) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical applications. Analytica Chimica Acta, 613(1), 83-90. doi:10.1016/j.aca.2008.02.019

Eldem, Y., & Özer, I. (2004). Electrophilic reactivity of cationic triarylmethane dyes towards proteins and protein-related nucleophiles. Dyes and Pigments, 60(1), 49-54. doi:10.1016/s0143-7208(03)00128-1

Cho, B. P., Yang, T., Blankenship, L. R., Moody, J. D., Churchwell, M., Beland, F. A., & Culp, S. J. (2003). Synthesis and Characterization ofN-Demethylated Metabolites of Malachite Green and Leucomalachite Green. Chemical Research in Toxicology, 16(3), 285-294. doi:10.1021/tx0256679

FEMS Microbiol. Lett. 2007 271

Soborover, E. I., Tverskoi, V. A., & Tokarev, S. V. (2005). An optical chemical sensor based on functional polymer films for controlling sulfur dioxide in the air of the working area: Acrylonitrile and alkyl methacrylate copolymers with brilliant green styrene sulfonate. Journal of Analytical Chemistry, 60(3), 274-281. doi:10.1007/s10809-005-0084-z

Motomizu, S., Fujiwara, S., & Tôei, K. (1981). Liquid—liquid distribution behavior of ion-pairs of triphenylmethane dye cations and their analytical applications. Analytica Chimica Acta, 128, 185-194. doi:10.1016/s0003-2670(01)84098-8

Uda, R. M., Oue, M., & Kimura, K. (2002). Specific behavior of crowned crystal violet in cation complexation and photochromism. Journal of Supramolecular Chemistry, 2(1-3), 311-316. doi:10.1016/s1472-7862(03)00086-8

Kimura, K., Mizutani, R., Yokoyama, M., Arakawa, R., & Sakurai, Y. (2000). Metal-Ion Complexation and Photochromism of Triphenylmethane Dye Derivatives Incorporating Monoaza-15-crown-5 Moieties. Journal of the American Chemical Society, 122(23), 5448-5454. doi:10.1021/ja9943694

F. L. Dickert M. Vonend H. Kimmel G. Mages Fresenius' Z. Anal. Chem. 1989 333 615 618

L. Dickert M. Vonend H. Kimmel G. Mages Fresenius' Z. Anal. Chem. 1989 333 615 618

Bengtsson, G., Nordal, V., Torssell, K., Smidsrød, O., Lindberg, A. A., Jansen, G., … Samuelsson, B. (1969). Polarographic Studies of Basic Triarylmethane Dyes. VI. The Polarographic Behaviour of Three Pyridine Analogues of Malachite Green. Acta Chemica Scandinavica, 23, 455-466. doi:10.3891/acta.chem.scand.23-0455

Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241

Akiyama, S., Yoshida, K., Hayashida, M., Nakashima, K., Nakatsuji, S., & Iyoda, M. (1981). ETHYNOLOGS OF TRIPHENYLMETHANE DYES. SYNTHESES AND PROPERTIES OF ACETYLENIC ANALOGS OF MALACHITE GREEN, CRYSTAL VIOLET, AND THEIR RELATED COMPOUNDS. Chemistry Letters, 10(3), 311-314. doi:10.1246/cl.1981.311

Zeng, X., Cai, J., & Gu, Y. (1995). A novel hydroxyalkyl-decyanation of 4-pyridinecarbonitrile: A facile selective synthesis of 4-pyridinemethanols. Tetrahedron Letters, 36(40), 7275-7276. doi:10.1016/0040-4039(95)01564-x

Villalonga-Barber, C., Steele, B. R., Kovač, V., Micha-Screttas, M., & Screttas, C. G. (2006). New stable, isolable triarylmethyl based dyes absorbing in the near infrared. Journal of Organometallic Chemistry, 691(12), 2785-2792. doi:10.1016/j.jorganchem.2006.02.017

Gorman, S. A., Hepworth, J. D., & Mason, D. (2000). The effects of cyclic terminal groups in di- and tri-arylmethane dyes. Part 3. Consequences of unsymmetrical substitution in Malachite Green. Journal of the Chemical Society, Perkin Transactions 2, (9), 1889-1895. doi:10.1039/b003219k

Hagiwara, T., & Motomizu, S. (1994). Equilibrium and Kinetic Studies on the Formation of Triphenylmethanols from Triphenylmethane Dyes. Bulletin of the Chemical Society of Japan, 67(2), 390-397. doi:10.1246/bcsj.67.390

Royo, S., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic, Specific Detection of the Nerve-Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 17(25), 6931-6934. doi:10.1002/chem.201100602

Nishiyabu, R., & Anzenbacher, P. (2005). Sensing of Antipyretic Carboxylates by Simple Chromogenic Calix[4]pyrroles. Journal of the American Chemical Society, 127(23), 8270-8271. doi:10.1021/ja051421p

Kassa, J. (2002). Review of Oximes in the Antidotal Treatment of Poisoning by Organophosphorus Nerve Agents. Journal of Toxicology: Clinical Toxicology, 40(6), 803-816. doi:10.1081/clt-120015840

De Silva, A. P., Uchiyama, S., Vance, T. P., & Wannalerse, B. (2007). A supramolecular chemistry basis for molecular logic and computation. Coordination Chemistry Reviews, 251(13-14), 1623-1632. doi:10.1016/j.ccr.2007.03.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem