Chemical Warfare Agents S. M. Somani J. A. Romano r. 2001
Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602
Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013
[+]
Chemical Warfare Agents S. M. Somani J. A. Romano r. 2001
Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602
Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013
Im, H.-J., & Song, K. (2009). Applications of Prompt Gamma Ray Neutron Activation Analysis: Detection of Illicit Materials. Applied Spectroscopy Reviews, 44(4), 317-334. doi:10.1080/05704920902852125
Sohn, H., Létant, S., Sailor, M. J., & Trogler, W. C. (2000). Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer. Journal of the American Chemical Society, 122(22), 5399-5400. doi:10.1021/ja0006200
Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f
Sens. Actuators B
Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720
Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339
Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b
Giordano, B., & Collins, G. (2007). Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. Current Organic Chemistry, 11(3), 255-265. doi:10.2174/138527207779940883
Kang, S., Kim, S., Yang, Y.-K., Bae, S., & Tae, J. (2009). Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron Letters, 50(17), 2010-2012. doi:10.1016/j.tetlet.2009.02.087
Costero, A. M., Parra, M., Gil, S., Gotor, R., Mancini, P. M. E., Martínez-Máñez, R., … Royo, S. (2010). Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chemistry - An Asian Journal, 5(7), 1573-1585. doi:10.1002/asia.201000058
Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie, 122(34), 6081-6084. doi:10.1002/ange.201001088
Zheng, Q., Zhu, Y., Xu, J., Cheng, Z., Li, H., & Li, X. (2012). Fluoroalcohol and fluorinated-phenol derivatives functionalized mesoporous SBA-15 hybrids: high-performance gas sensing toward nerve agent. J. Mater. Chem., 22(5), 2263-2270. doi:10.1039/c1jm14779j
Xi, C., Liu, Z., Kong, L., Hu, X., & Liu, S. (2008). Effects of interaction of folic acid with uranium (VI) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical applications. Analytica Chimica Acta, 613(1), 83-90. doi:10.1016/j.aca.2008.02.019
Eldem, Y., & Özer, I. (2004). Electrophilic reactivity of cationic triarylmethane dyes towards proteins and protein-related nucleophiles. Dyes and Pigments, 60(1), 49-54. doi:10.1016/s0143-7208(03)00128-1
Cho, B. P., Yang, T., Blankenship, L. R., Moody, J. D., Churchwell, M., Beland, F. A., & Culp, S. J. (2003). Synthesis and Characterization ofN-Demethylated Metabolites of Malachite Green and Leucomalachite Green. Chemical Research in Toxicology, 16(3), 285-294. doi:10.1021/tx0256679
FEMS Microbiol. Lett. 2007 271
Soborover, E. I., Tverskoi, V. A., & Tokarev, S. V. (2005). An optical chemical sensor based on functional polymer films for controlling sulfur dioxide in the air of the working area: Acrylonitrile and alkyl methacrylate copolymers with brilliant green styrene sulfonate. Journal of Analytical Chemistry, 60(3), 274-281. doi:10.1007/s10809-005-0084-z
Motomizu, S., Fujiwara, S., & Tôei, K. (1981). Liquid—liquid distribution behavior of ion-pairs of triphenylmethane dye cations and their analytical applications. Analytica Chimica Acta, 128, 185-194. doi:10.1016/s0003-2670(01)84098-8
Uda, R. M., Oue, M., & Kimura, K. (2002). Specific behavior of crowned crystal violet in cation complexation and photochromism. Journal of Supramolecular Chemistry, 2(1-3), 311-316. doi:10.1016/s1472-7862(03)00086-8
Kimura, K., Mizutani, R., Yokoyama, M., Arakawa, R., & Sakurai, Y. (2000). Metal-Ion Complexation and Photochromism of Triphenylmethane Dye Derivatives Incorporating Monoaza-15-crown-5 Moieties. Journal of the American Chemical Society, 122(23), 5448-5454. doi:10.1021/ja9943694
F. L. Dickert M. Vonend H. Kimmel G. Mages Fresenius' Z. Anal. Chem. 1989 333 615 618
L. Dickert M. Vonend H. Kimmel G. Mages Fresenius' Z. Anal. Chem. 1989 333 615 618
Bengtsson, G., Nordal, V., Torssell, K., Smidsrød, O., Lindberg, A. A., Jansen, G., … Samuelsson, B. (1969). Polarographic Studies of Basic Triarylmethane Dyes. VI. The Polarographic Behaviour of Three Pyridine Analogues of Malachite Green. Acta Chemica Scandinavica, 23, 455-466. doi:10.3891/acta.chem.scand.23-0455
Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241
Akiyama, S., Yoshida, K., Hayashida, M., Nakashima, K., Nakatsuji, S., & Iyoda, M. (1981). ETHYNOLOGS OF TRIPHENYLMETHANE DYES. SYNTHESES AND PROPERTIES OF ACETYLENIC ANALOGS OF MALACHITE GREEN, CRYSTAL VIOLET, AND THEIR RELATED COMPOUNDS. Chemistry Letters, 10(3), 311-314. doi:10.1246/cl.1981.311
Zeng, X., Cai, J., & Gu, Y. (1995). A novel hydroxyalkyl-decyanation of 4-pyridinecarbonitrile: A facile selective synthesis of 4-pyridinemethanols. Tetrahedron Letters, 36(40), 7275-7276. doi:10.1016/0040-4039(95)01564-x
Villalonga-Barber, C., Steele, B. R., Kovač, V., Micha-Screttas, M., & Screttas, C. G. (2006). New stable, isolable triarylmethyl based dyes absorbing in the near infrared. Journal of Organometallic Chemistry, 691(12), 2785-2792. doi:10.1016/j.jorganchem.2006.02.017
Gorman, S. A., Hepworth, J. D., & Mason, D. (2000). The effects of cyclic terminal groups in di- and tri-arylmethane dyes. Part 3. Consequences of unsymmetrical substitution in Malachite Green. Journal of the Chemical Society, Perkin Transactions 2, (9), 1889-1895. doi:10.1039/b003219k
Hagiwara, T., & Motomizu, S. (1994). Equilibrium and Kinetic Studies on the Formation of Triphenylmethanols from Triphenylmethane Dyes. Bulletin of the Chemical Society of Japan, 67(2), 390-397. doi:10.1246/bcsj.67.390
Royo, S., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic, Specific Detection of the Nerve-Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 17(25), 6931-6934. doi:10.1002/chem.201100602
Nishiyabu, R., & Anzenbacher, P. (2005). Sensing of Antipyretic Carboxylates by Simple Chromogenic Calix[4]pyrroles. Journal of the American Chemical Society, 127(23), 8270-8271. doi:10.1021/ja051421p
Kassa, J. (2002). Review of Oximes in the Antidotal Treatment of Poisoning by Organophosphorus Nerve Agents. Journal of Toxicology: Clinical Toxicology, 40(6), 803-816. doi:10.1081/clt-120015840
De Silva, A. P., Uchiyama, S., Vance, T. P., & Wannalerse, B. (2007). A supramolecular chemistry basis for molecular logic and computation. Coordination Chemistry Reviews, 251(13-14), 1623-1632. doi:10.1016/j.ccr.2007.03.001
[-]