- -

Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimeters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimeters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Costero Nieto, Ana María es_ES
dc.contributor.author Parra Álvarez, Margarita es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Gotor Candel, Raul Jesús es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Royo Calvo, Santiago es_ES
dc.date.accessioned 2015-06-02T05:56:15Z
dc.date.issued 2012-07-25
dc.identifier.issn 1434-193X
dc.identifier.uri http://hdl.handle.net/10251/51094
dc.description.abstract A family of triarylcarbinols 1-11 has been synthesised, and the chromogenic behaviour of the members in the presence of nerve-agent simulants diethylcyanophosphonate (DCNP) and diisopropylfluorophosphate (DFP) in acetonitrile and in buffered mixed water/acetonitrile solutions has been investigated. Hydrophobic polyethylene oxide films of these compounds have been prepared. Some of these triarylcarbinols act as OFF/ON chemodosimeters for the nerve agent simulants. The sensing mechanism includes phosphorylation of the hydroxyl group in the triarylcarbinol derivatives, followed by a dephosphatation reaction induced by the electron-donor groups present in the structure. The existence of additional tert-butyldimethylsilyl ether groups in compounds 2 and 3 permits these reagents to act as double probes by allowing selective signalling of DFP. The reactivity between 1 and 4-6 with DFP and DCNP in acetonitrile or water/acetonitrile solutions under pseudo first-order kinetic conditions was studied to determine rate constants (k) and the half-life times (t 1/2) for the corresponding reactions. Films containing compound 2 were used to detect simulants both in solution and in the vapour phase. Finally, a logic device was designed that incorporated compounds 2, 14, and 15 that allowed detection of DFP (a Sarin and Soman simulant) and DCNP (a Tabun simulant), even in the presence of possible interferents such as acids. Triarylmethanol derivatives as visual OFF/ON chromodosimeters of nerve-agent simulants (DCNP and DFP), even in water/acetonitrile (3:1 v/v) solutions, were investigated. The developed compounds were able to act as double probe systems and allowed the selective signalling of DFP. Films of compound 2 were used to detect the simulants in solution and in the vapour phase. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. es_ES
dc.description.sponsorship We thank the Spanish Government (projects MAT2009-14564-C04-01 and MAT2009-14564-C04-03) and the Generalitat Valenciana (project PROMETEO/2009/016) for support. R. G. is grateful to the Spanish Government for a fellowship. S. R. is grateful to the Generalitat Valenciana for a fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag GmbH & Co. es_ES
dc.relation.ispartof European Journal of Organic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Analytical methods es_ES
dc.subject Chemoselectivity es_ES
dc.subject Dyes es_ES
dc.subject Nerve agent simulants es_ES
dc.subject Sensors es_ES
dc.subject Toxicology es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimeters es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/ejoc.201200570
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-03/ES/Sensores Y Remediadores De Agentes Nerviosos Y Simulantes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S.; Gotor Candel, RJ.; Martínez Mañez, R.; Sancenón Galarza, F.; Royo Calvo, S. (2012). Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimeters. European Journal of Organic Chemistry. 2012(33):4937-4946. https://doi.org/10.1002/ejoc.201200570 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/ejoc.201200570 es_ES
dc.description.upvformatpinicio 4937 es_ES
dc.description.upvformatpfin 4946 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2012 es_ES
dc.description.issue 33 es_ES
dc.relation.senia 230308
dc.identifier.eissn 1099-0690
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Chemical Warfare Agents S. M. Somani J. A. Romano r. 2001 es_ES
dc.description.references Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602 es_ES
dc.description.references Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013 es_ES
dc.description.references Im, H.-J., & Song, K. (2009). Applications of Prompt Gamma Ray Neutron Activation Analysis: Detection of Illicit Materials. Applied Spectroscopy Reviews, 44(4), 317-334. doi:10.1080/05704920902852125 es_ES
dc.description.references Sohn, H., Létant, S., Sailor, M. J., & Trogler, W. C. (2000). Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer. Journal of the American Chemical Society, 122(22), 5399-5400. doi:10.1021/ja0006200 es_ES
dc.description.references Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f es_ES
dc.description.references Sens. Actuators B es_ES
dc.description.references Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720 es_ES
dc.description.references Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339 es_ES
dc.description.references Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b es_ES
dc.description.references Giordano, B., & Collins, G. (2007). Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. Current Organic Chemistry, 11(3), 255-265. doi:10.2174/138527207779940883 es_ES
dc.description.references Kang, S., Kim, S., Yang, Y.-K., Bae, S., & Tae, J. (2009). Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron Letters, 50(17), 2010-2012. doi:10.1016/j.tetlet.2009.02.087 es_ES
dc.description.references Costero, A. M., Parra, M., Gil, S., Gotor, R., Mancini, P. M. E., Martínez-Máñez, R., … Royo, S. (2010). Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chemistry - An Asian Journal, 5(7), 1573-1585. doi:10.1002/asia.201000058 es_ES
dc.description.references Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie, 122(34), 6081-6084. doi:10.1002/ange.201001088 es_ES
dc.description.references Zheng, Q., Zhu, Y., Xu, J., Cheng, Z., Li, H., & Li, X. (2012). Fluoroalcohol and fluorinated-phenol derivatives functionalized mesoporous SBA-15 hybrids: high-performance gas sensing toward nerve agent. J. Mater. Chem., 22(5), 2263-2270. doi:10.1039/c1jm14779j es_ES
dc.description.references Xi, C., Liu, Z., Kong, L., Hu, X., & Liu, S. (2008). Effects of interaction of folic acid with uranium (VI) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical applications. Analytica Chimica Acta, 613(1), 83-90. doi:10.1016/j.aca.2008.02.019 es_ES
dc.description.references Eldem, Y., & Özer, I. (2004). Electrophilic reactivity of cationic triarylmethane dyes towards proteins and protein-related nucleophiles. Dyes and Pigments, 60(1), 49-54. doi:10.1016/s0143-7208(03)00128-1 es_ES
dc.description.references Cho, B. P., Yang, T., Blankenship, L. R., Moody, J. D., Churchwell, M., Beland, F. A., & Culp, S. J. (2003). Synthesis and Characterization ofN-Demethylated Metabolites of Malachite Green and Leucomalachite Green. Chemical Research in Toxicology, 16(3), 285-294. doi:10.1021/tx0256679 es_ES
dc.description.references FEMS Microbiol. Lett. 2007 271 es_ES
dc.description.references Soborover, E. I., Tverskoi, V. A., & Tokarev, S. V. (2005). An optical chemical sensor based on functional polymer films for controlling sulfur dioxide in the air of the working area: Acrylonitrile and alkyl methacrylate copolymers with brilliant green styrene sulfonate. Journal of Analytical Chemistry, 60(3), 274-281. doi:10.1007/s10809-005-0084-z es_ES
dc.description.references Motomizu, S., Fujiwara, S., & Tôei, K. (1981). Liquid—liquid distribution behavior of ion-pairs of triphenylmethane dye cations and their analytical applications. Analytica Chimica Acta, 128, 185-194. doi:10.1016/s0003-2670(01)84098-8 es_ES
dc.description.references Uda, R. M., Oue, M., & Kimura, K. (2002). Specific behavior of crowned crystal violet in cation complexation and photochromism. Journal of Supramolecular Chemistry, 2(1-3), 311-316. doi:10.1016/s1472-7862(03)00086-8 es_ES
dc.description.references Kimura, K., Mizutani, R., Yokoyama, M., Arakawa, R., & Sakurai, Y. (2000). Metal-Ion Complexation and Photochromism of Triphenylmethane Dye Derivatives Incorporating Monoaza-15-crown-5 Moieties. Journal of the American Chemical Society, 122(23), 5448-5454. doi:10.1021/ja9943694 es_ES
dc.description.references F. L. Dickert M. Vonend H. Kimmel G. Mages Fresenius' Z. Anal. Chem. 1989 333 615 618 es_ES
dc.description.references L. Dickert M. Vonend H. Kimmel G. Mages Fresenius' Z. Anal. Chem. 1989 333 615 618 es_ES
dc.description.references Bengtsson, G., Nordal, V., Torssell, K., Smidsrød, O., Lindberg, A. A., Jansen, G., … Samuelsson, B. (1969). Polarographic Studies of Basic Triarylmethane Dyes. VI. The Polarographic Behaviour of Three Pyridine Analogues of Malachite Green. Acta Chemica Scandinavica, 23, 455-466. doi:10.3891/acta.chem.scand.23-0455 es_ES
dc.description.references Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241 es_ES
dc.description.references Akiyama, S., Yoshida, K., Hayashida, M., Nakashima, K., Nakatsuji, S., & Iyoda, M. (1981). ETHYNOLOGS OF TRIPHENYLMETHANE DYES. SYNTHESES AND PROPERTIES OF ACETYLENIC ANALOGS OF MALACHITE GREEN, CRYSTAL VIOLET, AND THEIR RELATED COMPOUNDS. Chemistry Letters, 10(3), 311-314. doi:10.1246/cl.1981.311 es_ES
dc.description.references Zeng, X., Cai, J., & Gu, Y. (1995). A novel hydroxyalkyl-decyanation of 4-pyridinecarbonitrile: A facile selective synthesis of 4-pyridinemethanols. Tetrahedron Letters, 36(40), 7275-7276. doi:10.1016/0040-4039(95)01564-x es_ES
dc.description.references Villalonga-Barber, C., Steele, B. R., Kovač, V., Micha-Screttas, M., & Screttas, C. G. (2006). New stable, isolable triarylmethyl based dyes absorbing in the near infrared. Journal of Organometallic Chemistry, 691(12), 2785-2792. doi:10.1016/j.jorganchem.2006.02.017 es_ES
dc.description.references Gorman, S. A., Hepworth, J. D., & Mason, D. (2000). The effects of cyclic terminal groups in di- and tri-arylmethane dyes. Part 3. Consequences of unsymmetrical substitution in Malachite Green. Journal of the Chemical Society, Perkin Transactions 2, (9), 1889-1895. doi:10.1039/b003219k es_ES
dc.description.references Hagiwara, T., & Motomizu, S. (1994). Equilibrium and Kinetic Studies on the Formation of Triphenylmethanols from Triphenylmethane Dyes. Bulletin of the Chemical Society of Japan, 67(2), 390-397. doi:10.1246/bcsj.67.390 es_ES
dc.description.references Royo, S., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic, Specific Detection of the Nerve-Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 17(25), 6931-6934. doi:10.1002/chem.201100602 es_ES
dc.description.references Nishiyabu, R., & Anzenbacher, P. (2005). Sensing of Antipyretic Carboxylates by Simple Chromogenic Calix[4]pyrroles. Journal of the American Chemical Society, 127(23), 8270-8271. doi:10.1021/ja051421p es_ES
dc.description.references Kassa, J. (2002). Review of Oximes in the Antidotal Treatment of Poisoning by Organophosphorus Nerve Agents. Journal of Toxicology: Clinical Toxicology, 40(6), 803-816. doi:10.1081/clt-120015840 es_ES
dc.description.references De Silva, A. P., Uchiyama, S., Vance, T. P., & Wannalerse, B. (2007). A supramolecular chemistry basis for molecular logic and computation. Coordination Chemistry Reviews, 251(13-14), 1623-1632. doi:10.1016/j.ccr.2007.03.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem