- -

On stability and reachability of perturbed positive systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On stability and reachability of perturbed positive systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cantó Colomina, Begoña es_ES
dc.contributor.author Coll, Carmen es_ES
dc.contributor.author Sánchez, Elena es_ES
dc.date.accessioned 2015-06-15T12:01:25Z
dc.date.available 2015-06-15T12:01:25Z
dc.date.issued 2014-11-26
dc.identifier.issn 1687-1839
dc.identifier.uri http://hdl.handle.net/10251/51718
dc.description.abstract This paper deals mainly with the structural properties of positive reachability and stability. We focus our attention on positive discrete-time systems and analyze the behavior of these systems subject to some perturbation. The effects of permutation and similar transformations are discussed in order to determine the structure of the perturbation such that the closed-loop system is positively reachable and stable. Finally, the results are applied to Leslie’s population model. The structure of the perturbation is shown such that the properties of the original system remain and an explicit expression of its set of positively reachable populations is given. es_ES
dc.description.sponsorship The authors would like to thank the referee and the associate editor for their very helpful suggestions. This work has been partially supported by Spanish Grant MTM2013 43678 P. en_EN
dc.language Inglés es_ES
dc.publisher SpringerOpen es_ES
dc.relation.ispartof Advances in Difference Equations es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Perturbation es_ES
dc.subject Reachability es_ES
dc.subject Stability es_ES
dc.subject nonnegative matrix es_ES
dc.subject M-matrix es_ES
dc.subject Positive linear system es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On stability and reachability of perturbed positive systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1687-1847-2014-296
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cantó Colomina, B.; Coll, C.; Sánchez, E. (2014). On stability and reachability of perturbed positive systems. Advances in Difference Equations. 296(1):1-11. https://doi.org/10.1186/1687-1847-2014-296 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.advancesindifferenceequations.com/content/2014/1/296 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 296 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 277030
dc.identifier.eissn 1687-1847
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cantó B, Coll C, Sánchez E: Parameter identification of a class of economical models. Discrete Dyn. Nat. Soc. 2010., 2010: Article ID 408346 es_ES
dc.description.references Cao H, Zhou Y: The discrete age-structured SEIT model with application to tuberculosis transmission in China. Math. Comput. Model. 2012, 55: 385-395. 10.1016/j.mcm.2011.08.017 es_ES
dc.description.references Coll C, Herrero A, Sánchez E, Thome N: A dynamic model for a study of diabetes. Math. Comput. Model. 2009, 50: 713-716. 10.1016/j.mcm.2008.12.027 es_ES
dc.description.references Emmert HE, Allen LSJ: Population persistence and extinction in a discrete-time, stage-structured epidemic model. J. Differ. Equ. Appl. 2004, 10: 1177-1199. 10.1080/10236190410001654151 es_ES
dc.description.references Li CK, Schneider H: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 2002, 44: 450-462. 10.1007/s002850100132 es_ES
dc.description.references Li X, Wang W: A discrete epidemic model with stage structure. Chaos Solitons Fractals 2006, 26: 947-958. es_ES
dc.description.references De la Sen M, Alonso-Quesada S: Some equilibrium, stability, instability and oscillatory results for an extended discrete epidemic model with evolution memory. Adv. Differ. Equ. 2013., 2013: Article ID 234 es_ES
dc.description.references Caccetta L, Rumchev VG: A survey of reachability and controllability for positive linear systems. Ann. Oper. Res. 2000, 98: 101-122. 10.1023/A:1019244121533 es_ES
dc.description.references Berman A, Plemons RJ: Nonnegative Matrices in Mathematical Science. SIAM, Philadelphia; 1994. es_ES
dc.description.references Diblík J, Khusainov D, Ruzicková M: Controllability of linear discrete systems with constant coefficients and pure delay. SIAM J. Control Optim. 2008, 47: 1140-1149. 10.1137/070689085 es_ES
dc.description.references Diblík J, Feckan M, Pospísil M: On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 2014, 52: 1745-1760. 10.1137/140953654 es_ES
dc.description.references Bru R, Romero S, Sánchez E: Canonical forms for positive discrete-time linear systems. Linear Algebra Appl. 2000, 310: 49-71. 10.1016/S0024-3795(00)00044-6 es_ES
dc.description.references Farina L, Rinaldi S: Positive Linear Systems. Wiley, New York; 2000. es_ES
dc.description.references Bru R, Coll C, Romero S, Sánchez E: Reachability indices of positive linear systems. Electron. J. Linear Algebra 2004, 11: 88-102. es_ES
dc.description.references Kajin M, Almeida PJAL, Vieira MV, Cerqueira R: The state of the art of population projection models: from the Leslie matrix to evolutionary demography. Oecol. Aust. 2012, 16(1):13-22. 10.4257/oeco.2012.1601.02 es_ES
dc.description.references Leslie PH: Some further notes on the use of matrices in population mathematics. Biometrika 1948, 35: 213-245. 10.1093/biomet/35.3-4.213 es_ES
dc.description.references Muratori S, Rinaldi S: Equilibria, stability and reachability of Leslie systems with nonnegative inputs. IEEE Trans. Autom. Control 1990, 35: 1065-1068. 10.1109/9.58539 es_ES
dc.description.references Caswell H: Matrix Population Models: Construction, Analysis and Interpretation. Sinauer, Sunderland; 2001. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem