- -

On stability and reachability of perturbed positive systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On stability and reachability of perturbed positive systems

Mostrar el registro completo del ítem

Cantó Colomina, B.; Coll, C.; Sánchez, E. (2014). On stability and reachability of perturbed positive systems. Advances in Difference Equations. 296(1):1-11. https://doi.org/10.1186/1687-1847-2014-296

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51718

Ficheros en el ítem

Metadatos del ítem

Título: On stability and reachability of perturbed positive systems
Autor: Cantó Colomina, Begoña Coll, Carmen Sánchez, Elena
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
This paper deals mainly with the structural properties of positive reachability and stability. We focus our attention on positive discrete-time systems and analyze the behavior of these systems subject to some perturbation. ...[+]
Palabras clave: Perturbation , Reachability , Stability , nonnegative matrix , M-matrix , Positive linear system
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Advances in Difference Equations. (issn: 1687-1839 ) (eissn: 1687-1847 )
DOI: 10.1186/1687-1847-2014-296
Editorial:
SpringerOpen
Versión del editor: http://www.advancesindifferenceequations.com/content/2014/1/296
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/
Agradecimientos:
The authors would like to thank the referee and the associate editor for their very helpful suggestions. This work has been partially supported by Spanish Grant MTM2013 43678 P.
Tipo: Artículo

References

Cantó B, Coll C, Sánchez E: Parameter identification of a class of economical models. Discrete Dyn. Nat. Soc. 2010., 2010: Article ID 408346

Cao H, Zhou Y: The discrete age-structured SEIT model with application to tuberculosis transmission in China. Math. Comput. Model. 2012, 55: 385-395. 10.1016/j.mcm.2011.08.017

Coll C, Herrero A, Sánchez E, Thome N: A dynamic model for a study of diabetes. Math. Comput. Model. 2009, 50: 713-716. 10.1016/j.mcm.2008.12.027 [+]
Cantó B, Coll C, Sánchez E: Parameter identification of a class of economical models. Discrete Dyn. Nat. Soc. 2010., 2010: Article ID 408346

Cao H, Zhou Y: The discrete age-structured SEIT model with application to tuberculosis transmission in China. Math. Comput. Model. 2012, 55: 385-395. 10.1016/j.mcm.2011.08.017

Coll C, Herrero A, Sánchez E, Thome N: A dynamic model for a study of diabetes. Math. Comput. Model. 2009, 50: 713-716. 10.1016/j.mcm.2008.12.027

Emmert HE, Allen LSJ: Population persistence and extinction in a discrete-time, stage-structured epidemic model. J. Differ. Equ. Appl. 2004, 10: 1177-1199. 10.1080/10236190410001654151

Li CK, Schneider H: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 2002, 44: 450-462. 10.1007/s002850100132

Li X, Wang W: A discrete epidemic model with stage structure. Chaos Solitons Fractals 2006, 26: 947-958.

De la Sen M, Alonso-Quesada S: Some equilibrium, stability, instability and oscillatory results for an extended discrete epidemic model with evolution memory. Adv. Differ. Equ. 2013., 2013: Article ID 234

Caccetta L, Rumchev VG: A survey of reachability and controllability for positive linear systems. Ann. Oper. Res. 2000, 98: 101-122. 10.1023/A:1019244121533

Berman A, Plemons RJ: Nonnegative Matrices in Mathematical Science. SIAM, Philadelphia; 1994.

Diblík J, Khusainov D, Ruzicková M: Controllability of linear discrete systems with constant coefficients and pure delay. SIAM J. Control Optim. 2008, 47: 1140-1149. 10.1137/070689085

Diblík J, Feckan M, Pospísil M: On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 2014, 52: 1745-1760. 10.1137/140953654

Bru R, Romero S, Sánchez E: Canonical forms for positive discrete-time linear systems. Linear Algebra Appl. 2000, 310: 49-71. 10.1016/S0024-3795(00)00044-6

Farina L, Rinaldi S: Positive Linear Systems. Wiley, New York; 2000.

Bru R, Coll C, Romero S, Sánchez E: Reachability indices of positive linear systems. Electron. J. Linear Algebra 2004, 11: 88-102.

Kajin M, Almeida PJAL, Vieira MV, Cerqueira R: The state of the art of population projection models: from the Leslie matrix to evolutionary demography. Oecol. Aust. 2012, 16(1):13-22. 10.4257/oeco.2012.1601.02

Leslie PH: Some further notes on the use of matrices in population mathematics. Biometrika 1948, 35: 213-245. 10.1093/biomet/35.3-4.213

Muratori S, Rinaldi S: Equilibria, stability and reachability of Leslie systems with nonnegative inputs. IEEE Trans. Autom. Control 1990, 35: 1065-1068. 10.1109/9.58539

Caswell H: Matrix Population Models: Construction, Analysis and Interpretation. Sinauer, Sunderland; 2001.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem