Cantó B, Coll C, Sánchez E: Parameter identification of a class of economical models. Discrete Dyn. Nat. Soc. 2010., 2010: Article ID 408346
Cao H, Zhou Y: The discrete age-structured SEIT model with application to tuberculosis transmission in China. Math. Comput. Model. 2012, 55: 385-395. 10.1016/j.mcm.2011.08.017
Coll C, Herrero A, Sánchez E, Thome N: A dynamic model for a study of diabetes. Math. Comput. Model. 2009, 50: 713-716. 10.1016/j.mcm.2008.12.027
[+]
Cantó B, Coll C, Sánchez E: Parameter identification of a class of economical models. Discrete Dyn. Nat. Soc. 2010., 2010: Article ID 408346
Cao H, Zhou Y: The discrete age-structured SEIT model with application to tuberculosis transmission in China. Math. Comput. Model. 2012, 55: 385-395. 10.1016/j.mcm.2011.08.017
Coll C, Herrero A, Sánchez E, Thome N: A dynamic model for a study of diabetes. Math. Comput. Model. 2009, 50: 713-716. 10.1016/j.mcm.2008.12.027
Emmert HE, Allen LSJ: Population persistence and extinction in a discrete-time, stage-structured epidemic model. J. Differ. Equ. Appl. 2004, 10: 1177-1199. 10.1080/10236190410001654151
Li CK, Schneider H: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 2002, 44: 450-462. 10.1007/s002850100132
Li X, Wang W: A discrete epidemic model with stage structure. Chaos Solitons Fractals 2006, 26: 947-958.
De la Sen M, Alonso-Quesada S: Some equilibrium, stability, instability and oscillatory results for an extended discrete epidemic model with evolution memory. Adv. Differ. Equ. 2013., 2013: Article ID 234
Caccetta L, Rumchev VG: A survey of reachability and controllability for positive linear systems. Ann. Oper. Res. 2000, 98: 101-122. 10.1023/A:1019244121533
Berman A, Plemons RJ: Nonnegative Matrices in Mathematical Science. SIAM, Philadelphia; 1994.
Diblík J, Khusainov D, Ruzicková M: Controllability of linear discrete systems with constant coefficients and pure delay. SIAM J. Control Optim. 2008, 47: 1140-1149. 10.1137/070689085
Diblík J, Feckan M, Pospísil M: On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 2014, 52: 1745-1760. 10.1137/140953654
Bru R, Romero S, Sánchez E: Canonical forms for positive discrete-time linear systems. Linear Algebra Appl. 2000, 310: 49-71. 10.1016/S0024-3795(00)00044-6
Farina L, Rinaldi S: Positive Linear Systems. Wiley, New York; 2000.
Bru R, Coll C, Romero S, Sánchez E: Reachability indices of positive linear systems. Electron. J. Linear Algebra 2004, 11: 88-102.
Kajin M, Almeida PJAL, Vieira MV, Cerqueira R: The state of the art of population projection models: from the Leslie matrix to evolutionary demography. Oecol. Aust. 2012, 16(1):13-22. 10.4257/oeco.2012.1601.02
Leslie PH: Some further notes on the use of matrices in population mathematics. Biometrika 1948, 35: 213-245. 10.1093/biomet/35.3-4.213
Muratori S, Rinaldi S: Equilibria, stability and reachability of Leslie systems with nonnegative inputs. IEEE Trans. Autom. Control 1990, 35: 1065-1068. 10.1109/9.58539
Caswell H: Matrix Population Models: Construction, Analysis and Interpretation. Sinauer, Sunderland; 2001.
[-]