- -

Role of superhydrophobicity in the biological activity of fibronectin at the cell¿material interface

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Role of superhydrophobicity in the biological activity of fibronectin at the cell¿material interface

Mostrar el registro completo del ítem

Ballester Beltrán, J.; Rico Tortosa, PM.; Moratal Pérez, D.; Song, W.; Mano, JF.; Salmerón Sánchez, M. (2011). Role of superhydrophobicity in the biological activity of fibronectin at the cell¿material interface. Soft Matter. 7(22):10803-10811. https://doi.org/10.1039/c1sm06102j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/53707

Ficheros en el ítem

Metadatos del ítem

Título: Role of superhydrophobicity in the biological activity of fibronectin at the cell¿material interface
Autor: Ballester Beltrán, José Rico Tortosa, Patricia María Moratal Pérez, David Song, Wenlong Mano, Joao F Salmerón Sánchez, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
Protein adsorption and cellular behavior depend strongly on the wettability of substrates. Such studies are scarce for surfaces exhibiting extreme values of contact angles. Fibronectin (FN) adsorption and adhesion of ...[+]
Palabras clave: Actin cytoskeleton , Cellular behaviors , Extreme value , F-actin fibers , Fibronectin adsorption , Focal adhesions , MC3T3-E1 cell , Myosin light chains , Paxillin , Protein adsorption , Super-hydrophobic surfaces , Superhydrophobic , Superhydrophobicity , Surface density , Vinculin , Adhesion , Adsorption , Cell adhesion , Cell proliferation , Cells , Contact angle , Glass , Hydrophobicity , Monoclonal antibodies , Phosphorylation , Polystyrenes , Proteins , Substrates , Surfaces , Cell culture
Derechos de uso: Reserva de todos los derechos
Fuente:
Soft Matter. (issn: 1744-683X ) (eissn: 1744-6848 )
DOI: 10.1039/c1sm06102j
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/ 10.1039/c1sm06102j
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/
Agradecimientos:
The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, ...[+]
Tipo: Artículo

References

Michiardi, A., Aparicio, C., Ratner, B. D., Planell, J. A., & Gil, J. (2007). The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials, 28(4), 586-594. doi:10.1016/j.biomaterials.2006.09.040

Arima, Y., & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28(20), 3074-3082. doi:10.1016/j.biomaterials.2007.03.013

Lim, J. Y., Shaughnessy, M. C., Zhou, Z., Noh, H., Vogler, E. A., & Donahue, H. J. (2008). Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials, 29(12), 1776-1784. doi:10.1016/j.biomaterials.2007.12.026 [+]
Michiardi, A., Aparicio, C., Ratner, B. D., Planell, J. A., & Gil, J. (2007). The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials, 28(4), 586-594. doi:10.1016/j.biomaterials.2006.09.040

Arima, Y., & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28(20), 3074-3082. doi:10.1016/j.biomaterials.2007.03.013

Lim, J. Y., Shaughnessy, M. C., Zhou, Z., Noh, H., Vogler, E. A., & Donahue, H. J. (2008). Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials, 29(12), 1776-1784. doi:10.1016/j.biomaterials.2007.12.026

Prime, K. L., & Whitesides, G. M. (1993). Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. Journal of the American Chemical Society, 115(23), 10714-10721. doi:10.1021/ja00076a032

Sun, T., Tan, H., Han, D., Fu, Q., & Jiang, L. (2005). No Platelet Can Adhere—Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces. Small, 1(10), 959-963. doi:10.1002/smll.200500095

Gugutkov, D., Altankov, G., Rodríguez Hernández, J. C., Monleón Pradas, M., & Salmerón Sánchez, M. (2010). Fibronectin activity on substrates with controlled OH density. Journal of Biomedical Materials Research Part A, 92A(1), 322-331. doi:10.1002/jbm.a.32374

Lee, H. J., & Michielsen, S. (2006). Preparation of a superhydrophobic rough surface. Journal of Polymer Science Part B: Polymer Physics, 45(3), 253-261. doi:10.1002/polb.21036

Yoon, Y. I., Moon, H. S., Lyoo, W. S., Lee, T. S., & Park, W. H. (2008). Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. Journal of Colloid and Interface Science, 320(1), 91-95. doi:10.1016/j.jcis.2008.01.029

Yuan, Z., Chen, H., Tang, J., Chen, X., Zhao, D., & Wang, Z. (2007). Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol. Surface and Coatings Technology, 201(16-17), 7138-7142. doi:10.1016/j.surfcoat.2007.01.021

Fresnais, J., Chapel, J. P., & Poncin-Epaillard, F. (2006). Synthesis of transparent superhydrophobic polyethylene surfaces. Surface and Coatings Technology, 200(18-19), 5296-5305. doi:10.1016/j.surfcoat.2005.06.022

Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2(11), 793-805. doi:10.1038/35099066

Lee, Y., Park, S.-H., Kim, K.-B., & Lee, J.-K. (2007). Fabrication of Hierarchical Structures on a Polymer Surface to Mimic Natural Superhydrophobic Surfaces. Advanced Materials, 19(17), 2330-2335. doi:10.1002/adma.200700820

Sun, T., Feng, L., Gao, X., & Jiang, L. (2005). Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research, 38(8), 644-652. doi:10.1021/ar040224c

Zhu, Y., Zhang, J., Zheng, Y., Huang, Z., Feng, L., & Jiang, L. (2006). Stable, Superhydrophobic, and Conductive Polyaniline/Polystyrene Films for Corrosive Environments. Advanced Functional Materials, 16(4), 568-574. doi:10.1002/adfm.200500624

Wang, S., Feng, L., & Jiang, L. (2006). One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces. Advanced Materials, 18(6), 767-770. doi:10.1002/adma.200501794

Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428(6982), 487-492. doi:10.1038/nature02388

Peppas, N., & Langer, R. (1994). New challenges in biomaterials. Science, 263(5154), 1715-1720. doi:10.1126/science.8134835

Banerjee, R., Nageswari, K., & Puniyani, R. R. (1997). Hematological Aspects of Biocompatibility-Review Article. Journal of Biomaterials Applications, 12(1), 57-76. doi:10.1177/088532829701200104

Song, W., Veiga, D. D., Custódio, C. A., & Mano, J. F. (2009). Bioinspired Degradable Substrates with Extreme Wettability Properties. Advanced Materials, 21(18), 1830-1834. doi:10.1002/adma.200803680

Alves, N. M., Shi, J., Oramas, E., Santos, J. L., Tomás, H., & Mano, J. F. (2009). Bioinspired superhydrophobic poly(L-lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. Journal of Biomedical Materials Research Part A, 91A(2), 480-488. doi:10.1002/jbm.a.32210

Ishizaki, T., Saito, N., & Takai, O. (2010). Correlation of Cell Adhesive Behaviors on Superhydrophobic, Superhydrophilic, and Micropatterned Superhydrophobic/Superhydrophilic Surfaces to Their Surface Chemistry. Langmuir, 26(11), 8147-8154. doi:10.1021/la904447c

Anselme, K. (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21(7), 667-681. doi:10.1016/s0142-9612(99)00242-2

Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6

HYNES, R. (1987). Integrins: A family of cell surface receptors. Cell, 48(4), 549-554. doi:10.1016/0092-8674(87)90233-9

Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697

Avnur, Z., & Geiger, B. (1981). The removal of extracellular fibronectin from areas of cell-substrate contact. Cell, 25(1), 121-132. doi:10.1016/0092-8674(81)90236-1

Altankov, G., Grinnell, F., & Groth, T. (1996). Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 30(3), 385-391. doi:10.1002/(sici)1097-4636(199603)30:3<385::aid-jbm13>3.0.co;2-j

Oliveira, N. M., Neto, A. I., Song, W., & Mano, J. F. (2010). Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface. Applied Physics Express, 3(8), 085205. doi:10.1143/apex.3.085205

Feng, X. J., & Jiang, L. (2006). Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 18(23), 3063-3078. doi:10.1002/adma.200501961

Erbil, H. Y. ;l. &i. ;r&i. ;. (2003). Transformation of a Simple Plastic into a Superhydrophobic Surface. Science, 299(5611), 1377-1380. doi:10.1126/science.1078365

Shi, J., Alves, N. M., & Mano, J. F. (2008). Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods. Bioinspiration & Biomimetics, 3(3), 034003. doi:10.1088/1748-3182/3/3/034003

Oliveira, S. M., Song, W., Alves, N. M., & Mano, J. F. (2011). Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter, 7(19), 8932. doi:10.1039/c1sm05943b

Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141

Yao, X., Song, Y., & Jiang, L. (2010). Applications of Bio-Inspired Special Wettable Surfaces. Advanced Materials, 23(6), 719-734. doi:10.1002/adma.201002689

Matsumura, H., Kawasaki, K., & Kambara, M. (1997). Wetting of protein-adsorbed solid surfaces studied by a dynamic method. Colloids and Surfaces B: Biointerfaces, 8(4-5), 181-188. doi:10.1016/s0927-7765(96)01325-2

Ugarova, T. P., Zamarron, C., Veklich, Y., Bowditch, R. D., Ginsberg, M. H., Weisel, J. W., & Plow, E. F. (1995). Conformational Transitions in the Cell Binding Domain of Fibronectin. Biochemistry, 34(13), 4457-4466. doi:10.1021/bi00013a039

McClary, K. B., Ugarova, T., & Grainger, D. W. (2000). Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. Journal of Biomedical Materials Research, 50(3), 428-439. doi:10.1002/(sici)1097-4636(20000605)50:3<428::aid-jbm18>3.0.co;2-h

SCHOEN, R. C., BENTLEY, K. L., & KLEBE, R. J. (1982). Monoclonal Antibody Against Human Fibronectin Which Inhibits Cell Attachment. Hybridoma, 1(2), 99-108. doi:10.1089/hyb.1.1982.1.99

Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537

Pankov, R. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059

Redick, S. D., Settles, D. L., Briscoe, G., & Erickson, H. P. (2000). Defining Fibronectin’s Cell Adhesion Synergy Site by Site-Directed Mutagenesis. The Journal of Cell Biology, 149(2), 521-527. doi:10.1083/jcb.149.2.521

Mao, C., Qiu, Y., Sang, H., Mei, H., Zhu, A., Shen, J., & Lin, S. (2004). Various approaches to modify biomaterial surfaces for improving hemocompatibility. Advances in Colloid and Interface Science, 110(1-2), 5-17. doi:10.1016/j.cis.2004.02.001

Chinn, J. A., Horbett, T. A., & Ratner, B. D. (1991). Baboon Fibrinogen Adsorption and Platelet Adhesion to Polymeric Materials. Thrombosis and Haemostasis, 65(05), 608-617. doi:10.1055/s-0038-1648198

García, A. J., Schwarzbauer, J. E., & Boettiger, D. (2002). Distinct Activation States of α5β1 Integrin Show Differential Binding to RGD and Synergy Domains of Fibronectin†. Biochemistry, 41(29), 9063-9069. doi:10.1021/bi025752f

González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021

Martínez, E. C., Hernández, J. C. R., Machado, M., Mano, J. F., Ribelles, J. L. G., Pradas, M. M., & Sánchez, M. S. (2008). Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering Part A, 14(10), 1751-1762. doi:10.1089/ten.tea.2007.0270

Scopelliti, P. E., Borgonovo, A., Indrieri, M., Giorgetti, L., Bongiorno, G., Carbone, R., … Milani, P. (2010). The Effect of Surface Nanometre-Scale Morphology on Protein Adsorption. PLoS ONE, 5(7), e11862. doi:10.1371/journal.pone.0011862

Pegueroles, M., Aparicio, C., Bosio, M., Engel, E., Gil, F. J., Planell, J. A., & Altankov, G. (2010). Spatial organization of osteoblast fibronectin matrix on titanium surfaces: Effects of roughness, chemical heterogeneity and surface energy. Acta Biomaterialia, 6(1), 291-301. doi:10.1016/j.actbio.2009.07.030

Ulmer, J., Geiger, B., & Spatz, J. P. (2008). Force-induced fibronectin fibrillogenesis in vitro. Soft Matter, 4(10), 1998. doi:10.1039/b808020h

Welch, M. D., & Mullins, R. D. (2002). Cellular Control of Actin Nucleation. Annual Review of Cell and Developmental Biology, 18(1), 247-288. doi:10.1146/annurev.cellbio.18.040202.112133

Curtis, A., & Wilkinson, C. (1997). Topographical control of cells. Biomaterials, 18(24), 1573-1583. doi:10.1016/s0142-9612(97)00144-0

Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49(2), 155-166. doi:10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j

Zinger, O., Zhao, G., Schwartz, Z., Simpson, J., Wieland, M., Landolt, D., & Boyan, B. (2005). Differential regulation of osteoblasts by substrate microstructural features. Biomaterials, 26(14), 1837-1847. doi:10.1016/j.biomaterials.2004.06.035

Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., … Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997-1003. doi:10.1038/nmat2013

llić, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., … Aizawa, S. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377(6549), 539-544. doi:10.1038/377539a0

Frisch, S. M., Vuori, K., Ruoslahti, E., & Chan-Hui, P. Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. The Journal of Cell Biology, 134(3), 793-799. doi:10.1083/jcb.134.3.793

Zhao, J.-H., Reiske, H., & Guan, J.-L. (1998). Regulation of the Cell Cycle by Focal Adhesion Kinase. The Journal of Cell Biology, 143(7), 1997-2008. doi:10.1083/jcb.143.7.1997

Thannickal, V. J., Lee, D. Y., White, E. S., Cui, Z., Larios, J. M., Chacon, R., … Thomas, P. E. (2003). Myofibroblast Differentiation by Transforming Growth Factor-β1 Is Dependent on Cell Adhesion and Integrin Signaling via Focal Adhesion Kinase. Journal of Biological Chemistry, 278(14), 12384-12389. doi:10.1074/jbc.m208544200

Schaller, M. D., Hildebrand, J. D., Shannon, J. D., Fox, J. W., Vines, R. R., & Parsons, J. T. (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Molecular and Cellular Biology, 14(3), 1680-1688. doi:10.1128/mcb.14.3.1680

Reiske, H. R., Kao, S.-C., Cary, L. A., Guan, J.-L., Lai, J.-F., & Chen, H.-C. (1999). Requirement of Phosphatidylinositol 3-Kinase in Focal Adhesion Kinase-promoted Cell Migration. Journal of Biological Chemistry, 274(18), 12361-12366. doi:10.1074/jbc.274.18.12361

Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062

Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K., & García, A. J. (2009). Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation. Molecular Biology of the Cell, 20(9), 2508-2519. doi:10.1091/mbc.e08-01-0076

Dumbauld, D. W., Michael, K. E., Hanks, S. K., & García, A. J. (2010). Focal adhesion kinase-dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions. Biology of the Cell, 102(4), 203-213. doi:10.1042/bc20090104

Altankov, G., Groth, T., Krasteva, N., Albrecht, W., & Paul, D. (1997). Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata. Journal of Biomaterials Science, Polymer Edition, 8(9), 721-740. doi:10.1163/156856297x00524

Kato, M., & Mrksich, M. (2004). Using Model Substrates To Study the Dependence of Focal Adhesion Formation on the Affinity of Integrin−Ligand Complexes†. Biochemistry, 43(10), 2699-2707. doi:10.1021/bi0352670

Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature, 437(7059), 640-647. doi:10.1038/nature04162

Lins, L., & Brasseur, R. (1995). The hydrophobic effect in protein folding. The FASEB Journal, 9(7), 535-540. doi:10.1096/fasebj.9.7.7737462

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem