Michiardi, A., Aparicio, C., Ratner, B. D., Planell, J. A., & Gil, J. (2007). The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials, 28(4), 586-594. doi:10.1016/j.biomaterials.2006.09.040
Arima, Y., & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28(20), 3074-3082. doi:10.1016/j.biomaterials.2007.03.013
Lim, J. Y., Shaughnessy, M. C., Zhou, Z., Noh, H., Vogler, E. A., & Donahue, H. J. (2008). Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials, 29(12), 1776-1784. doi:10.1016/j.biomaterials.2007.12.026
[+]
Michiardi, A., Aparicio, C., Ratner, B. D., Planell, J. A., & Gil, J. (2007). The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials, 28(4), 586-594. doi:10.1016/j.biomaterials.2006.09.040
Arima, Y., & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28(20), 3074-3082. doi:10.1016/j.biomaterials.2007.03.013
Lim, J. Y., Shaughnessy, M. C., Zhou, Z., Noh, H., Vogler, E. A., & Donahue, H. J. (2008). Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials, 29(12), 1776-1784. doi:10.1016/j.biomaterials.2007.12.026
Prime, K. L., & Whitesides, G. M. (1993). Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. Journal of the American Chemical Society, 115(23), 10714-10721. doi:10.1021/ja00076a032
Sun, T., Tan, H., Han, D., Fu, Q., & Jiang, L. (2005). No Platelet Can Adhere—Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces. Small, 1(10), 959-963. doi:10.1002/smll.200500095
Gugutkov, D., Altankov, G., RodrÃguez Hernández, J. C., Monleón Pradas, M., & Salmerón Sánchez, M. (2010). Fibronectin activity on substrates with controlled OH density. Journal of Biomedical Materials Research Part A, 92A(1), 322-331. doi:10.1002/jbm.a.32374
Lee, H. J., & Michielsen, S. (2006). Preparation of a superhydrophobic rough surface. Journal of Polymer Science Part B: Polymer Physics, 45(3), 253-261. doi:10.1002/polb.21036
Yoon, Y. I., Moon, H. S., Lyoo, W. S., Lee, T. S., & Park, W. H. (2008). Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. Journal of Colloid and Interface Science, 320(1), 91-95. doi:10.1016/j.jcis.2008.01.029
Yuan, Z., Chen, H., Tang, J., Chen, X., Zhao, D., & Wang, Z. (2007). Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol. Surface and Coatings Technology, 201(16-17), 7138-7142. doi:10.1016/j.surfcoat.2007.01.021
Fresnais, J., Chapel, J. P., & Poncin-Epaillard, F. (2006). Synthesis of transparent superhydrophobic polyethylene surfaces. Surface and Coatings Technology, 200(18-19), 5296-5305. doi:10.1016/j.surfcoat.2005.06.022
Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2(11), 793-805. doi:10.1038/35099066
Lee, Y., Park, S.-H., Kim, K.-B., & Lee, J.-K. (2007). Fabrication of Hierarchical Structures on a Polymer Surface to Mimic Natural Superhydrophobic Surfaces. Advanced Materials, 19(17), 2330-2335. doi:10.1002/adma.200700820
Sun, T., Feng, L., Gao, X., & Jiang, L. (2005). Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research, 38(8), 644-652. doi:10.1021/ar040224c
Zhu, Y., Zhang, J., Zheng, Y., Huang, Z., Feng, L., & Jiang, L. (2006). Stable, Superhydrophobic, and Conductive Polyaniline/Polystyrene Films for Corrosive Environments. Advanced Functional Materials, 16(4), 568-574. doi:10.1002/adfm.200500624
Wang, S., Feng, L., & Jiang, L. (2006). One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces. Advanced Materials, 18(6), 767-770. doi:10.1002/adma.200501794
Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428(6982), 487-492. doi:10.1038/nature02388
Peppas, N., & Langer, R. (1994). New challenges in biomaterials. Science, 263(5154), 1715-1720. doi:10.1126/science.8134835
Banerjee, R., Nageswari, K., & Puniyani, R. R. (1997). Hematological Aspects of Biocompatibility-Review Article. Journal of Biomaterials Applications, 12(1), 57-76. doi:10.1177/088532829701200104
Song, W., Veiga, D. D., Custódio, C. A., & Mano, J. F. (2009). Bioinspired Degradable Substrates with Extreme Wettability Properties. Advanced Materials, 21(18), 1830-1834. doi:10.1002/adma.200803680
Alves, N. M., Shi, J., Oramas, E., Santos, J. L., Tomás, H., & Mano, J. F. (2009). Bioinspired superhydrophobic poly(L-lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. Journal of Biomedical Materials Research Part A, 91A(2), 480-488. doi:10.1002/jbm.a.32210
Ishizaki, T., Saito, N., & Takai, O. (2010). Correlation of Cell Adhesive Behaviors on Superhydrophobic, Superhydrophilic, and Micropatterned Superhydrophobic/Superhydrophilic Surfaces to Their Surface Chemistry. Langmuir, 26(11), 8147-8154. doi:10.1021/la904447c
Anselme, K. (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21(7), 667-681. doi:10.1016/s0142-9612(99)00242-2
Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6
HYNES, R. (1987). Integrins: A family of cell surface receptors. Cell, 48(4), 549-554. doi:10.1016/0092-8674(87)90233-9
Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697
Avnur, Z., & Geiger, B. (1981). The removal of extracellular fibronectin from areas of cell-substrate contact. Cell, 25(1), 121-132. doi:10.1016/0092-8674(81)90236-1
Altankov, G., Grinnell, F., & Groth, T. (1996). Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 30(3), 385-391. doi:10.1002/(sici)1097-4636(199603)30:3<385::aid-jbm13>3.0.co;2-j
Oliveira, N. M., Neto, A. I., Song, W., & Mano, J. F. (2010). Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface. Applied Physics Express, 3(8), 085205. doi:10.1143/apex.3.085205
Feng, X. J., & Jiang, L. (2006). Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 18(23), 3063-3078. doi:10.1002/adma.200501961
Erbil, H. Y. ;l. &i. ;r&i. ;. (2003). Transformation of a Simple Plastic into a Superhydrophobic Surface. Science, 299(5611), 1377-1380. doi:10.1126/science.1078365
Shi, J., Alves, N. M., & Mano, J. F. (2008). Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods. Bioinspiration & Biomimetics, 3(3), 034003. doi:10.1088/1748-3182/3/3/034003
Oliveira, S. M., Song, W., Alves, N. M., & Mano, J. F. (2011). Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter, 7(19), 8932. doi:10.1039/c1sm05943b
Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141
Yao, X., Song, Y., & Jiang, L. (2010). Applications of Bio-Inspired Special Wettable Surfaces. Advanced Materials, 23(6), 719-734. doi:10.1002/adma.201002689
Matsumura, H., Kawasaki, K., & Kambara, M. (1997). Wetting of protein-adsorbed solid surfaces studied by a dynamic method. Colloids and Surfaces B: Biointerfaces, 8(4-5), 181-188. doi:10.1016/s0927-7765(96)01325-2
Ugarova, T. P., Zamarron, C., Veklich, Y., Bowditch, R. D., Ginsberg, M. H., Weisel, J. W., & Plow, E. F. (1995). Conformational Transitions in the Cell Binding Domain of Fibronectin. Biochemistry, 34(13), 4457-4466. doi:10.1021/bi00013a039
McClary, K. B., Ugarova, T., & Grainger, D. W. (2000). Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. Journal of Biomedical Materials Research, 50(3), 428-439. doi:10.1002/(sici)1097-4636(20000605)50:3<428::aid-jbm18>3.0.co;2-h
SCHOEN, R. C., BENTLEY, K. L., & KLEBE, R. J. (1982). Monoclonal Antibody Against Human Fibronectin Which Inhibits Cell Attachment. Hybridoma, 1(2), 99-108. doi:10.1089/hyb.1.1982.1.99
Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537
Pankov, R. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059
Redick, S. D., Settles, D. L., Briscoe, G., & Erickson, H. P. (2000). Defining Fibronectin’s Cell Adhesion Synergy Site by Site-Directed Mutagenesis. The Journal of Cell Biology, 149(2), 521-527. doi:10.1083/jcb.149.2.521
Mao, C., Qiu, Y., Sang, H., Mei, H., Zhu, A., Shen, J., & Lin, S. (2004). Various approaches to modify biomaterial surfaces for improving hemocompatibility. Advances in Colloid and Interface Science, 110(1-2), 5-17. doi:10.1016/j.cis.2004.02.001
Chinn, J. A., Horbett, T. A., & Ratner, B. D. (1991). Baboon Fibrinogen Adsorption and Platelet Adhesion to Polymeric Materials. Thrombosis and Haemostasis, 65(05), 608-617. doi:10.1055/s-0038-1648198
García, A. J., Schwarzbauer, J. E., & Boettiger, D. (2002). Distinct Activation States of α5β1 Integrin Show Differential Binding to RGD and Synergy Domains of Fibronectin†. Biochemistry, 41(29), 9063-9069. doi:10.1021/bi025752f
González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021
Martínez, E. C., Hernández, J. C. R., Machado, M., Mano, J. F., Ribelles, J. L. G., Pradas, M. M., & Sánchez, M. S. (2008). Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering Part A, 14(10), 1751-1762. doi:10.1089/ten.tea.2007.0270
Scopelliti, P. E., Borgonovo, A., Indrieri, M., Giorgetti, L., Bongiorno, G., Carbone, R., … Milani, P. (2010). The Effect of Surface Nanometre-Scale Morphology on Protein Adsorption. PLoS ONE, 5(7), e11862. doi:10.1371/journal.pone.0011862
Pegueroles, M., Aparicio, C., Bosio, M., Engel, E., Gil, F. J., Planell, J. A., & Altankov, G. (2010). Spatial organization of osteoblast fibronectin matrix on titanium surfaces: Effects of roughness, chemical heterogeneity and surface energy. Acta Biomaterialia, 6(1), 291-301. doi:10.1016/j.actbio.2009.07.030
Ulmer, J., Geiger, B., & Spatz, J. P. (2008). Force-induced fibronectin fibrillogenesis in vitro. Soft Matter, 4(10), 1998. doi:10.1039/b808020h
Welch, M. D., & Mullins, R. D. (2002). Cellular Control of Actin Nucleation. Annual Review of Cell and Developmental Biology, 18(1), 247-288. doi:10.1146/annurev.cellbio.18.040202.112133
Curtis, A., & Wilkinson, C. (1997). Topographical control of cells. Biomaterials, 18(24), 1573-1583. doi:10.1016/s0142-9612(97)00144-0
Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49(2), 155-166. doi:10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j
Zinger, O., Zhao, G., Schwartz, Z., Simpson, J., Wieland, M., Landolt, D., & Boyan, B. (2005). Differential regulation of osteoblasts by substrate microstructural features. Biomaterials, 26(14), 1837-1847. doi:10.1016/j.biomaterials.2004.06.035
Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., … Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997-1003. doi:10.1038/nmat2013
llić, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., … Aizawa, S. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377(6549), 539-544. doi:10.1038/377539a0
Frisch, S. M., Vuori, K., Ruoslahti, E., & Chan-Hui, P. Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. The Journal of Cell Biology, 134(3), 793-799. doi:10.1083/jcb.134.3.793
Zhao, J.-H., Reiske, H., & Guan, J.-L. (1998). Regulation of the Cell Cycle by Focal Adhesion Kinase. The Journal of Cell Biology, 143(7), 1997-2008. doi:10.1083/jcb.143.7.1997
Thannickal, V. J., Lee, D. Y., White, E. S., Cui, Z., Larios, J. M., Chacon, R., … Thomas, P. E. (2003). Myofibroblast Differentiation by Transforming Growth Factor-β1 Is Dependent on Cell Adhesion and Integrin Signaling via Focal Adhesion Kinase. Journal of Biological Chemistry, 278(14), 12384-12389. doi:10.1074/jbc.m208544200
Schaller, M. D., Hildebrand, J. D., Shannon, J. D., Fox, J. W., Vines, R. R., & Parsons, J. T. (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Molecular and Cellular Biology, 14(3), 1680-1688. doi:10.1128/mcb.14.3.1680
Reiske, H. R., Kao, S.-C., Cary, L. A., Guan, J.-L., Lai, J.-F., & Chen, H.-C. (1999). Requirement of Phosphatidylinositol 3-Kinase in Focal Adhesion Kinase-promoted Cell Migration. Journal of Biological Chemistry, 274(18), 12361-12366. doi:10.1074/jbc.274.18.12361
Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062
Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K., & García, A. J. (2009). Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation. Molecular Biology of the Cell, 20(9), 2508-2519. doi:10.1091/mbc.e08-01-0076
Dumbauld, D. W., Michael, K. E., Hanks, S. K., & García, A. J. (2010). Focal adhesion kinase-dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions. Biology of the Cell, 102(4), 203-213. doi:10.1042/bc20090104
Altankov, G., Groth, T., Krasteva, N., Albrecht, W., & Paul, D. (1997). Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata. Journal of Biomaterials Science, Polymer Edition, 8(9), 721-740. doi:10.1163/156856297x00524
Kato, M., & Mrksich, M. (2004). Using Model Substrates To Study the Dependence of Focal Adhesion Formation on the Affinity of Integrin−Ligand Complexes†. Biochemistry, 43(10), 2699-2707. doi:10.1021/bi0352670
Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature, 437(7059), 640-647. doi:10.1038/nature04162
Lins, L., & Brasseur, R. (1995). The hydrophobic effect in protein folding. The FASEB Journal, 9(7), 535-540. doi:10.1096/fasebj.9.7.7737462
[-]