- -

Protein diffusion through charged nanopores with different radii at low ionic strength

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Protein diffusion through charged nanopores with different radii at low ionic strength

Show full item record

Stroeve, P.; Rahman, M.; Naidu, LD.; Chu, G.; Mahmoudi, M.; Ramirez Hoyos, P.; Mafé, S. (2014). Protein diffusion through charged nanopores with different radii at low ionic strength. Physical Chemistry Chemical Physics. 16(39):21570-21576. https://doi.org/10.1039/c4cp03198a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55358

Files in this item

Item Metadata

Title: Protein diffusion through charged nanopores with different radii at low ionic strength
Author: Stroeve, Pieter Rahman, Masoud Naidu, Lekkala Dev Chu, Gilbert Mahmoudi, Morteza Ramirez Hoyos, Patricio Mafé, Salvador
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] The diffusion of two similar molecular weight proteins, bovine serum albumin (BSA) and bovine haemoglobin (BHb), through nanoporous charged membranes with a wide range of pore radii is studied at low ionic strength. ...[+]
Subjects: Bovine serum albumin , Self assembled monolayers , Ultrafiltration membranes , Microporous membranes , Molecular transport , Aqueous solutions , Light scattering , Surface , PH , Hemoglobin
Copyrigths: Reserva de todos los derechos
Source:
Physical Chemistry Chemical Physics. (issn: 1463-9076 ) (eissn: 1463-9084 )
DOI: 10.1039/c4cp03198a
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c4cp03198a
Project ID:
info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/
Thanks:
This work was supported by a grant from the University of California Office of the President UCOP Lab Fee Program. P.R. and S.M. acknowledge the financial support from the Ministry of Economy and Competitiveness of Spain ...[+]
Type: Artículo

References

Pujar, N. S., & Zydney, A. L. (1998). Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. Journal of Chromatography A, 796(2), 229-238. doi:10.1016/s0021-9673(97)01003-0

Chun, K.-Y., Mafé, S., Ramírez, P., & Stroeve, P. (2006). Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chemical Physics Letters, 418(4-6), 561-564. doi:10.1016/j.cplett.2005.11.029

Ileri, N., Faller, R., Palazoglu, A., Létant, S. E., Tringe, J. W., & Stroeve, P. (2013). Molecular transport of proteins through nanoporous membranes fabricated by interferometric lithography. Phys. Chem. Chem. Phys., 15(3), 965-971. doi:10.1039/c2cp43400h [+]
Pujar, N. S., & Zydney, A. L. (1998). Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. Journal of Chromatography A, 796(2), 229-238. doi:10.1016/s0021-9673(97)01003-0

Chun, K.-Y., Mafé, S., Ramírez, P., & Stroeve, P. (2006). Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chemical Physics Letters, 418(4-6), 561-564. doi:10.1016/j.cplett.2005.11.029

Ileri, N., Faller, R., Palazoglu, A., Létant, S. E., Tringe, J. W., & Stroeve, P. (2013). Molecular transport of proteins through nanoporous membranes fabricated by interferometric lithography. Phys. Chem. Chem. Phys., 15(3), 965-971. doi:10.1039/c2cp43400h

Burns, D. B., & Zydney, A. L. (2001). Contributions to electrostatic interactions on protein transport in membrane systems. AIChE Journal, 47(5), 1101-1114. doi:10.1002/aic.690470517

Chun, K.-Y., & Stroeve, P. (2002). Protein Transport in Nanoporous Membranes Modified with Self-Assembled Monolayers of Functionalized Thiols. Langmuir, 18(12), 4653-4658. doi:10.1021/la011250b

Osmanbeyoglu, H. U., Hur, T. B., & Kim, H. K. (2009). Thin alumina nanoporous membranes for similar size biomolecule separation. Journal of Membrane Science, 343(1-2), 1-6. doi:10.1016/j.memsci.2009.07.027

Tanford, C., & Buzzell, J. G. (1956). The Viscosity of Aqueous Solutions of Bovine Serum Albumin between pH 4.3 and 10.5. The Journal of Physical Chemistry, 60(2), 225-231. doi:10.1021/j150536a020

Stroeve, P., & Ileri, N. (2011). Biotechnical and other applications of nanoporous membranes. Trends in Biotechnology, 29(6), 259-266. doi:10.1016/j.tibtech.2011.02.002

Ho, C.-C., & Zydney, A. L. (2001). Protein Fouling of Asymmetric and Composite Microfiltration Membranes. Industrial & Engineering Chemistry Research, 40(5), 1412-1421. doi:10.1021/ie000810j

Ku, J.-R., & Stroeve, P. (2004). Protein Diffusion in Charged Nanotubes:  «On−Off» Behavior of Molecular Transport. Langmuir, 20(5), 2030-2032. doi:10.1021/la0357662

Yu, S., Lee, S. B., Kang, M., & Martin, C. R. (2001). Size-Based Protein Separations in Poly(ethylene glycol)-Derivatized Gold Nanotubule Membranes. Nano Letters, 1(9), 495-498. doi:10.1021/nl010044l

Yu, S., Lee, S. B., & Martin, C. R. (2003). Electrophoretic Protein Transport in Gold Nanotube Membranes. Analytical Chemistry, 75(6), 1239-1244. doi:10.1021/ac020711a

Hou, Z., Abbott, N. L., & Stroeve, P. (2000). Self-Assembled Monolayers on Electroless Gold Impart pH-Responsive Transport of Ions in Porous Membranes. Langmuir, 16(5), 2401-2404. doi:10.1021/la991045k

Böhme, U., & Scheler, U. (2007). Effective charge of bovine serum albumin determined by electrophoresis NMR. Chemical Physics Letters, 435(4-6), 342-345. doi:10.1016/j.cplett.2006.12.068

Beretta, S., Chirico, G., Arosio, D., & Baldini, G. (1997). Role of Ionic Strength on Hemoglobin Interparticle Interactions and Subunit Dissociation from Light Scattering. Macromolecules, 30(25), 7849-7855. doi:10.1021/ma971137l

Gaigalas, A. K., Hubbard, J. B., McCurley, M., & Woo, S. (1992). Diffusion of bovine serum albumin in aqueous solutions. The Journal of Physical Chemistry, 96(5), 2355-2359. doi:10.1021/j100184a063

LaGattuta, K. J., Sharma, V. S., Nicoli, D. F., & Kothari, B. K. (1981). Diffusion coefficients of hemoglobin by intensity fluctuation spectroscopy: effects of varying pH and ionic strength. Biophysical Journal, 33(1), 63-79. doi:10.1016/s0006-3495(81)84872-2

Mafé, S., Manzanares, J. A., & Ramirez, P. (2003). Modeling of surface vs. bulk ionic conductivity in fixed charge membranes. Phys. Chem. Chem. Phys., 5(2), 376-383. doi:10.1039/b209438j

Biesheuvel, P. M., Stroeve, P., & Barneveld, P. A. (2004). Effect of Protein Adsorption and Ionic Strength on the Equilibrium Partition Coefficient of Ionizable Macromolecules in Charged Nanopores. The Journal of Physical Chemistry B, 108(45), 17660-17665. doi:10.1021/jp047913q

Biesheuvel, P. M., & Wittemann, A. (2005). A Modified Box Model Including Charge Regulation for Protein Adsorption in a Spherical Polyelectrolyte Brush. The Journal of Physical Chemistry B, 109(9), 4209-4214. doi:10.1021/jp0452812

Keesom, W. ., Zelenka, R. ., & Radke, C. . (1988). A zeta-potential model for ionic surfactant adsorption on an ionogenic hydrophobic surface. Journal of Colloid and Interface Science, 125(2), 575-585. doi:10.1016/0021-9797(88)90024-0

G. B. Benedek and F. M. H.Villars , Physics with illustrative examples from Medicine and Biology (Statistical Physics) , Springer-Verlag , Heidelberg , 2000

Arosio, D., Kwansa, H. E., Gering, H., Piszczek, G., & Bucci, E. (2001). Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites. Biopolymers, 63(1), 1-11. doi:10.1002/bip.1057

Axelsson, I. (1978). Characterization of proteins and other macromolecules by agarose gel chromatography. Journal of Chromatography A, 152(1), 21-32. doi:10.1016/s0021-9673(00)85330-3

Beck, R. E., & Schultz, J. S. (1970). Hindered Diffusion in Microporous Membranes with Known Pore Geometry. Science, 170(3964), 1302-1305. doi:10.1126/science.170.3964.1302

Burns, D. B., & Zydney, A. L. (1999). Effect of solution pH on protein transport through ultrafiltration membranes. Biotechnology and Bioengineering, 64(1), 27-37. doi:10.1002/(sici)1097-0290(19990705)64:1<27::aid-bit3>3.0.co;2-e

Schoch, R. B., Bertsch, A., & Renaud, P. (2006). pH-Controlled Diffusion of Proteins with Different pI Values Across a Nanochannel on a Chip. Nano Letters, 6(3), 543-547. doi:10.1021/nl052372h

Durand, N. F. Y., Dellagiacoma, C., Goetschmann, R., Bertsch, A., Märki, I., Lasser, T., & Renaud, P. (2009). Direct Observation of Transitions between Surface-Dominated and Bulk Diffusion Regimes in Nanochannels. Analytical Chemistry, 81(13), 5407-5412. doi:10.1021/ac900617b

Rohani, M. M., & Zydney, A. L. (2010). Role of electrostatic interactions during protein ultrafiltration. Advances in Colloid and Interface Science, 160(1-2), 40-48. doi:10.1016/j.cis.2010.07.002

Rohani, M. M., & Zydney, A. L. (2009). Effect of surface charge distribution on protein transport through semipermeable ultrafiltration membranes. Journal of Membrane Science, 337(1-2), 324-331. doi:10.1016/j.memsci.2009.04.007

Mafé, S., Manzanares, J. A., & Pellicer, J. (1990). On the introduction of the pore wall charge in the space-charge model for microporous membranes. Journal of Membrane Science, 51(1-2), 161-168. doi:10.1016/s0376-7388(00)80899-6

Bosma, J. C., & Wesselingh, J. A. (1998). pH dependence of ion-exchange equilibrium of proteins. AIChE Journal, 44(11), 2399-2409. doi:10.1002/aic.690441108

Shi, Q., Zhou, Y., & Sun, Y. (2008). Influence of pH and Ionic Strength on the Steric Mass-Action Model Parameters around the Isoelectric Point of Protein. Biotechnology Progress, 21(2), 516-523. doi:10.1021/bp049735o

Jönsson, B., & Ståhlberg, J. (1999). The electrostatic interaction between a charged sphere and an oppositely charged planar surface and its application to protein adsorption. Colloids and Surfaces B: Biointerfaces, 14(1-4), 67-75. doi:10.1016/s0927-7765(99)00025-9

Brenner, H., & Gaydos, L. J. (1977). The constrained brownian movement of spherical particles in cylindrical pores of comparable radius. Journal of Colloid and Interface Science, 58(2), 312-356. doi:10.1016/0021-9797(77)90147-3

Cannell, D. S., & Rondelez, F. (1980). Diffusion of Polystyrenes through Microporous Membranes. Macromolecules, 13(6), 1599-1602. doi:10.1021/ma60078a046

Kuo, T.-C., Sloan, L. A., Sweedler, J. V., & Bohn, P. W. (2001). Manipulating Molecular Transport through Nanoporous Membranes by Control of Electrokinetic Flow:  Effect of Surface Charge Density and Debye Length. Langmuir, 17(20), 6298-6303. doi:10.1021/la010429j

APEL, P., BLONSKAYA, I., DMITRIEV, S., ORELOVITCH, O., & SARTOWSKA, B. (2006). Structure of polycarbonate track-etch membranes: Origin of the «paradoxical» pore shape. Journal of Membrane Science, 282(1-2), 393-400. doi:10.1016/j.memsci.2006.05.045

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record