- -

Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior

Show full item record

Cordero Barbero, A.; Fardi, M.; Ghasemi, M.; Torregrosa Sánchez, JR. (2014). Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior. Calcolo. 51(1):17-30. https://doi.org/10.1007/s10092-012-0073-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55523

Files in this item

Item Metadata

Title: Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior
Author: Cordero Barbero, Alicia Fardi, M. Ghasemi, M. Torregrosa Sánchez, Juan Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Issued date:
Abstract:
In this paper, we present a family of optimal, in the sense of Kung-Traub's conjecture, iterative methods for solving nonlinear equations with eighth-order convergence. Our methods are based on Chun's fourth-order method. ...[+]
Subjects: Convergence order , Efficiency index , Basin of attraction , Periodic orbit , Dynamical plane , Nonlinear equations , Iterative methods
Copyrigths: Reserva de todos los derechos
Source:
Calcolo. (issn: 0008-0624 )
DOI: 10.1007/s10092-012-0073-1
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s10092-012-0073-1
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/
Thanks:
This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by the Center of Excellence for Mathematics, University of Shahrekord, Iran.
Type: Artículo

References

Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009)

Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984)

Chun, C.: Some variants of Kings fourth-order family of methods for nonlinear equations. Appl. Math. Comput. 190, 57–62 (2007) [+]
Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009)

Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984)

Chun, C.: Some variants of Kings fourth-order family of methods for nonlinear equations. Appl. Math. Comput. 190, 57–62 (2007)

Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 234, 2969–2976 (2010)

Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s method with optimal eighth order of convergence. Appl. Math. Lett. 24(12), 2082–2086 (2011)

Douady, A., Hubbard, J.H.: On the dynamics of polynomials-like mappings. Ann. Sci. Ec. Norm. Sup. (Paris) 18, 287–343 (1985)

Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)

Liu, L., Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comput. 215, 3449–3454 (2010)

Ostrowski, A.M.: Solutions of equations and systems of equations. Academic Press, New York (1966)

Sharma, J.R., Sharma, R.: A family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algoritms 54, 445–458 (2010)

Soleymani, F., Karimi Banani, S., Khan, M., Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence. Math. Comput. Model. 55, 1373–1380 (2012)

Thukral, R., Petkovic, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record