Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Fardi, M. | es_ES |
dc.contributor.author | Ghasemi, M. | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2015-10-05T07:58:15Z | |
dc.date.available | 2015-10-05T07:58:15Z | |
dc.date.issued | 2014-03 | |
dc.identifier.issn | 0008-0624 | |
dc.identifier.uri | http://hdl.handle.net/10251/55523 | |
dc.description.abstract | In this paper, we present a family of optimal, in the sense of Kung-Traub's conjecture, iterative methods for solving nonlinear equations with eighth-order convergence. Our methods are based on Chun's fourth-order method. We use the Ostrowski's efficiency index and several numerical tests in order to compare the new methods with other known eighth-order ones. We also extend this comparison to the dynamical study of the different methods | es_ES |
dc.description.sponsorship | This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by the Center of Excellence for Mathematics, University of Shahrekord, Iran. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Calcolo | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Convergence order | es_ES |
dc.subject | Efficiency index | es_ES |
dc.subject | Basin of attraction | es_ES |
dc.subject | Periodic orbit | es_ES |
dc.subject | Dynamical plane | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10092-012-0073-1 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Fardi, M.; Ghasemi, M.; Torregrosa Sánchez, JR. (2014). Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior. Calcolo. 51(1):17-30. https://doi.org/10.1007/s10092-012-0073-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10092-012-0073-1 | es_ES |
dc.description.upvformatpinicio | 17 | es_ES |
dc.description.upvformatpfin | 30 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 51 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 269012 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Islamic Azad University, Shahrekord | es_ES |
dc.description.references | Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009) | es_ES |
dc.description.references | Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984) | es_ES |
dc.description.references | Chun, C.: Some variants of Kings fourth-order family of methods for nonlinear equations. Appl. Math. Comput. 190, 57–62 (2007) | es_ES |
dc.description.references | Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 234, 2969–2976 (2010) | es_ES |
dc.description.references | Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) | es_ES |
dc.description.references | Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s method with optimal eighth order of convergence. Appl. Math. Lett. 24(12), 2082–2086 (2011) | es_ES |
dc.description.references | Douady, A., Hubbard, J.H.: On the dynamics of polynomials-like mappings. Ann. Sci. Ec. Norm. Sup. (Paris) 18, 287–343 (1985) | es_ES |
dc.description.references | Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974) | es_ES |
dc.description.references | Liu, L., Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comput. 215, 3449–3454 (2010) | es_ES |
dc.description.references | Ostrowski, A.M.: Solutions of equations and systems of equations. Academic Press, New York (1966) | es_ES |
dc.description.references | Sharma, J.R., Sharma, R.: A family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algoritms 54, 445–458 (2010) | es_ES |
dc.description.references | Soleymani, F., Karimi Banani, S., Khan, M., Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence. Math. Comput. Model. 55, 1373–1380 (2012) | es_ES |
dc.description.references | Thukral, R., Petkovic, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010) | es_ES |