- -

Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Fardi, M. es_ES
dc.contributor.author Ghasemi, M. es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2015-10-05T07:58:15Z
dc.date.available 2015-10-05T07:58:15Z
dc.date.issued 2014-03
dc.identifier.issn 0008-0624
dc.identifier.uri http://hdl.handle.net/10251/55523
dc.description.abstract In this paper, we present a family of optimal, in the sense of Kung-Traub's conjecture, iterative methods for solving nonlinear equations with eighth-order convergence. Our methods are based on Chun's fourth-order method. We use the Ostrowski's efficiency index and several numerical tests in order to compare the new methods with other known eighth-order ones. We also extend this comparison to the dynamical study of the different methods es_ES
dc.description.sponsorship This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by the Center of Excellence for Mathematics, University of Shahrekord, Iran. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Calcolo es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Convergence order es_ES
dc.subject Efficiency index es_ES
dc.subject Basin of attraction es_ES
dc.subject Periodic orbit es_ES
dc.subject Dynamical plane es_ES
dc.subject Nonlinear equations es_ES
dc.subject Iterative methods es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10092-012-0073-1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Fardi, M.; Ghasemi, M.; Torregrosa Sánchez, JR. (2014). Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior. Calcolo. 51(1):17-30. https://doi.org/10.1007/s10092-012-0073-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10092-012-0073-1 es_ES
dc.description.upvformatpinicio 17 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 269012 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Islamic Azad University, Shahrekord es_ES
dc.description.references Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009) es_ES
dc.description.references Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984) es_ES
dc.description.references Chun, C.: Some variants of Kings fourth-order family of methods for nonlinear equations. Appl. Math. Comput. 190, 57–62 (2007) es_ES
dc.description.references Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 234, 2969–2976 (2010) es_ES
dc.description.references Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) es_ES
dc.description.references Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s method with optimal eighth order of convergence. Appl. Math. Lett. 24(12), 2082–2086 (2011) es_ES
dc.description.references Douady, A., Hubbard, J.H.: On the dynamics of polynomials-like mappings. Ann. Sci. Ec. Norm. Sup. (Paris) 18, 287–343 (1985) es_ES
dc.description.references Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974) es_ES
dc.description.references Liu, L., Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comput. 215, 3449–3454 (2010) es_ES
dc.description.references Ostrowski, A.M.: Solutions of equations and systems of equations. Academic Press, New York (1966) es_ES
dc.description.references Sharma, J.R., Sharma, R.: A family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algoritms 54, 445–458 (2010) es_ES
dc.description.references Soleymani, F., Karimi Banani, S., Khan, M., Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence. Math. Comput. Model. 55, 1373–1380 (2012) es_ES
dc.description.references Thukral, R., Petkovic, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem