dc.contributor.author |
Cordero Barbero, Alicia
|
es_ES |
dc.contributor.author |
Fardi, M.
|
es_ES |
dc.contributor.author |
Ghasemi, M.
|
es_ES |
dc.contributor.author |
Torregrosa Sánchez, Juan Ramón
|
es_ES |
dc.date.accessioned |
2015-10-05T07:58:15Z |
|
dc.date.available |
2015-10-05T07:58:15Z |
|
dc.date.issued |
2014-03 |
|
dc.identifier.issn |
0008-0624 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/55523 |
|
dc.description.abstract |
In this paper, we present a family of optimal, in the sense of Kung-Traub's conjecture, iterative methods for solving nonlinear equations with eighth-order convergence. Our methods are based on Chun's fourth-order method. We use the Ostrowski's efficiency index and several numerical tests in order to compare the new methods with other known eighth-order ones. We also extend this comparison to the dynamical study of the different methods |
es_ES |
dc.description.sponsorship |
This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by the Center of Excellence for Mathematics, University of Shahrekord, Iran. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer Verlag (Germany) |
es_ES |
dc.relation.ispartof |
Calcolo |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Convergence order |
es_ES |
dc.subject |
Efficiency index |
es_ES |
dc.subject |
Basin of attraction |
es_ES |
dc.subject |
Periodic orbit |
es_ES |
dc.subject |
Dynamical plane |
es_ES |
dc.subject |
Nonlinear equations |
es_ES |
dc.subject |
Iterative methods |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s10092-012-0073-1 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària |
es_ES |
dc.description.bibliographicCitation |
Cordero Barbero, A.; Fardi, M.; Ghasemi, M.; Torregrosa Sánchez, JR. (2014). Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior. Calcolo. 51(1):17-30. https://doi.org/10.1007/s10092-012-0073-1 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1007/s10092-012-0073-1 |
es_ES |
dc.description.upvformatpinicio |
17 |
es_ES |
dc.description.upvformatpfin |
30 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
51 |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.relation.senia |
269012 |
es_ES |
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
es_ES |
dc.contributor.funder |
Islamic Azad University, Shahrekord |
es_ES |
dc.description.references |
Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009) |
es_ES |
dc.description.references |
Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984) |
es_ES |
dc.description.references |
Chun, C.: Some variants of Kings fourth-order family of methods for nonlinear equations. Appl. Math. Comput. 190, 57–62 (2007) |
es_ES |
dc.description.references |
Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 234, 2969–2976 (2010) |
es_ES |
dc.description.references |
Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) |
es_ES |
dc.description.references |
Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s method with optimal eighth order of convergence. Appl. Math. Lett. 24(12), 2082–2086 (2011) |
es_ES |
dc.description.references |
Douady, A., Hubbard, J.H.: On the dynamics of polynomials-like mappings. Ann. Sci. Ec. Norm. Sup. (Paris) 18, 287–343 (1985) |
es_ES |
dc.description.references |
Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974) |
es_ES |
dc.description.references |
Liu, L., Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comput. 215, 3449–3454 (2010) |
es_ES |
dc.description.references |
Ostrowski, A.M.: Solutions of equations and systems of equations. Academic Press, New York (1966) |
es_ES |
dc.description.references |
Sharma, J.R., Sharma, R.: A family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algoritms 54, 445–458 (2010) |
es_ES |
dc.description.references |
Soleymani, F., Karimi Banani, S., Khan, M., Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence. Math. Comput. Model. 55, 1373–1380 (2012) |
es_ES |
dc.description.references |
Thukral, R., Petkovic, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010) |
es_ES |