Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009)
Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984)
Chun, C.: Some variants of Kings fourth-order family of methods for nonlinear equations. Appl. Math. Comput. 190, 57–62 (2007)
[+]
Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009)
Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984)
Chun, C.: Some variants of Kings fourth-order family of methods for nonlinear equations. Appl. Math. Comput. 190, 57–62 (2007)
Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 234, 2969–2976 (2010)
Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)
Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s method with optimal eighth order of convergence. Appl. Math. Lett. 24(12), 2082–2086 (2011)
Douady, A., Hubbard, J.H.: On the dynamics of polynomials-like mappings. Ann. Sci. Ec. Norm. Sup. (Paris) 18, 287–343 (1985)
Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)
Liu, L., Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comput. 215, 3449–3454 (2010)
Ostrowski, A.M.: Solutions of equations and systems of equations. Academic Press, New York (1966)
Sharma, J.R., Sharma, R.: A family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algoritms 54, 445–458 (2010)
Soleymani, F., Karimi Banani, S., Khan, M., Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence. Math. Comput. Model. 55, 1373–1380 (2012)
Thukral, R., Petkovic, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010)
[-]