Weirauch, D. F. (1975). Correlation of the anisotropic etching of single−crystal silicon spheres and wafers. Journal of Applied Physics, 46(4), 1478-1483. doi:10.1063/1.321787
Seidel, H. (1990). Anisotropic Etching of Crystalline Silicon in Alkaline Solutions. Journal of The Electrochemical Society, 137(11), 3612. doi:10.1149/1.2086277
Zielke, D., & Frühauf, J. (1995). Determination of rates for orientation-dependent etching. Sensors and Actuators A: Physical, 48(2), 151-156. doi:10.1016/0924-4247(95)00993-0
[+]
Weirauch, D. F. (1975). Correlation of the anisotropic etching of single−crystal silicon spheres and wafers. Journal of Applied Physics, 46(4), 1478-1483. doi:10.1063/1.321787
Seidel, H. (1990). Anisotropic Etching of Crystalline Silicon in Alkaline Solutions. Journal of The Electrochemical Society, 137(11), 3612. doi:10.1149/1.2086277
Zielke, D., & Frühauf, J. (1995). Determination of rates for orientation-dependent etching. Sensors and Actuators A: Physical, 48(2), 151-156. doi:10.1016/0924-4247(95)00993-0
Wind, R. A., & Hines, M. A. (2000). Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surface Science, 460(1-3), 21-38. doi:10.1016/s0039-6028(00)00479-9
Gosálvez, M. A., Sato, K., Foster, A. S., Nieminen, R. M., & Tanaka, H. (2007). An atomistic introduction to anisotropic etching. Journal of Micromechanics and Microengineering, 17(4), S1-S26. doi:10.1088/0960-1317/17/4/s01
Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y., & Yamamoto, M. (1998). Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sensors and Actuators A: Physical, 64(1), 87-93. doi:10.1016/s0924-4247(97)01658-0
Zubel, I., & Kramkowska, M. (2002). The effect of alcohol additives on etching characteristics in KOH solutions. Sensors and Actuators A: Physical, 101(3), 255-261. doi:10.1016/s0924-4247(02)00265-0
Charbonnieras, A. R., & Tellier, C. R. (1999). Characterization of the anisotropic chemical attack of {hk0} silicon plates in a T.M.A.H. solution. Sensors and Actuators A: Physical, 77(2), 81-97. doi:10.1016/s0924-4247(99)00020-5
Shikida, M., Sato, K., Tokoro, K., & Uchikawa, D. (2000). Differences in anisotropic etching properties of KOH and TMAH solutions. Sensors and Actuators A: Physical, 80(2), 179-188. doi:10.1016/s0924-4247(99)00264-2
Gosálvez, M. A., Zubel, I., & Viinikka, E. (2010). Wet Etching of Silicon. Handbook of Silicon Based MEMS Materials and Technologies, 375-407. doi:10.1016/b978-0-8155-1594-4.00024-3
Pal, P., Gosalvez, M. A., & Sato, K. (2010). Silicon Micromachining Based on Surfactant-Added Tetramethyl Ammonium Hydroxide: Etching Mechanism and Advanced Applications. Japanese Journal of Applied Physics, 49(5), 056702. doi:10.1143/jjap.49.056702
Zubel, I., & Kramkowska, M. (2004). Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sensors and Actuators A: Physical, 115(2-3), 549-556. doi:10.1016/j.sna.2003.11.010
Fruhauf, J., Trautmann, K., Wittig, J., & Zielke, D. (1993). A simulation tool for orientation dependent etching. Journal of Micromechanics and Microengineering, 3(3), 113-115. doi:10.1088/0960-1317/3/3/004
Than, O., & Büttgenbach, S. (1994). Simulation of anisotropic chemical etching of crystalline silicon using a cellular automata model. Sensors and Actuators A: Physical, 45(1), 85-89. doi:10.1016/0924-4247(94)00820-5
Camon, H., Gue, A. M., Danel, J. S., & Djafari-Rouhani, M. (1992). Modelling of anisotropic etching in silicon-based sensor application. Sensors and Actuators A: Physical, 33(1-2), 103-105. doi:10.1016/0924-4247(92)80237-w
Gosalvez, M. ., Nieminen, R. ., Kilpinen, P., Haimi, E., & Lindroos, V. (2001). Anisotropic wet chemical etching of crystalline silicon: atomistic Monte-Carlo simulations and experiments. Applied Surface Science, 178(1-4), 7-26. doi:10.1016/s0169-4332(01)00233-1
Zhenjun Zhu, & Chang Liu. (2000). Micromachining process simulation using a continuous cellular automata method. Journal of Microelectromechanical Systems, 9(2), 252-261. doi:10.1109/84.846706
Gosalvez, M. A., Yan Xing, & Sato, K. (2008). Analytical Solution of the Continuous Cellular Automaton for Anisotropic Etching. Journal of Microelectromechanical Systems, 17(2), 410-431. doi:10.1109/jmems.2008.916339
Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Faster and exact implementation of the continuous cellular automaton for anisotropic etching simulations. Journal of Micromechanics and Microengineering, 21(2), 025021. doi:10.1088/0960-1317/21/2/025021
Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Computer Physics Communications, 182(3), 628-640. doi:10.1016/j.cpc.2010.11.004
Moktadir, Z., & Camon, H. (1997). Monte Carlo simulation of anisotropic etching of silicon: investigation of surface properties. Modelling and Simulation in Materials Science and Engineering, 5(5), 481-488. doi:10.1088/0965-0393/5/5/004
Flidr, J., Huang, Y.-C., & Hines, M. A. (1999). An atomistic mechanism for the production of two- and three-dimensional etch hillocks on Si(111) surfaces. The Journal of Chemical Physics, 111(15), 6970-6981. doi:10.1063/1.479990
Gos lvez, M. A., & Nieminen, R. M. (2003). Surface morphology during anisotropic wet chemical etching of crystalline silicon. New Journal of Physics, 5, 100-100. doi:10.1088/1367-2630/5/1/400
Xing, Y., Gosálvez, M. A., Sato, K., Tian, M., & Yi, H. (2012). Evolutionary determination of kinetic Monte Carlo rates for the simulation of evolving surfaces in anisotropic etching of silicon. Journal of Micromechanics and Microengineering, 22(8), 085020. doi:10.1088/0960-1317/22/8/085020
Xing, Y., Gosálvez, M. A., Sato, K., & Yi, H. (2009). Orientation-dependent surface morphology of crystalline silicon during anisotropic etching using a continuous cellular automaton. Journal of Micromechanics and Microengineering, 20(1), 015019. doi:10.1088/0960-1317/20/1/015019
Zhou, Z., Huang, Q., Li, W., & Deng, W. (2007). A cellular automaton-based simulator for silicon anisotropic etching processes considering high index planes. Journal of Micromechanics and Microengineering, 17(4), S38-S49. doi:10.1088/0960-1317/17/4/s03
Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2009). Discrete and continuous cellular automata for the simulation of propagating surfaces. Sensors and Actuators A: Physical, 155(1), 98-112. doi:10.1016/j.sna.2009.08.012
Ferrando, N., Gosálvez, M. A., & Colóm, R. J. (2012). Evolutionary continuous cellular automaton for the simulation of wet etching of quartz. Journal of Micromechanics and Microengineering, 22(2), 025021. doi:10.1088/0960-1317/22/2/025021
Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12-49. doi:10.1016/0021-9991(88)90002-2
Adalsteinsson, D., & Sethian, J. A. (1995). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography I: Algorithms and Two-Dimensional Simulations. Journal of Computational Physics, 120(1), 128-144. doi:10.1006/jcph.1995.1153
Adalsteinsson, D., & Sethian, J. A. (1995). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography II: Three-Dimensional Simulations. Journal of Computational Physics, 122(2), 348-366. doi:10.1006/jcph.1995.1221
Adalsteinsson, D., & Sethian, J. A. (1997). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography. Journal of Computational Physics, 138(1), 193-223. doi:10.1006/jcph.1997.5817
Ertl, O., & Selberherr, S. (2009). A fast level set framework for large three-dimensional topography simulations. Computer Physics Communications, 180(8), 1242-1250. doi:10.1016/j.cpc.2009.02.002
Ertl, O., & Selberherr, S. (2010). Three-dimensional level set based Bosch process simulations using ray tracing for flux calculation. Microelectronic Engineering, 87(1), 20-29. doi:10.1016/j.mee.2009.05.011
Burzynski, T., & Papini, M. (2010). Level set methods for the modelling of surface evolution in the abrasive jet micromachining of features used in MEMS and microfluidic devices. Journal of Micromechanics and Microengineering, 20(8), 085004. doi:10.1088/0960-1317/20/8/085004
Radjenović, B., Lee, J. K., & Radmilović-Radjenović, M. (2006). Sparse field level set method for non-convex Hamiltonians in 3D plasma etching profile simulations. Computer Physics Communications, 174(2), 127-132. doi:10.1016/j.cpc.2005.09.010
Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2006). Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon. Applied Physics Letters, 89(21), 213102. doi:10.1063/1.2388860
Branislav, R., & Marija, R.-R. (2010). Level set simulations of the anisotropic wet etching process for device fabrication in nanotechnologies. Hemijska industrija, 64(2), 93-97. doi:10.2298/hemind100205008r
Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2010). Level Set Approach to Anisotropic Wet Etching of Silicon. Sensors, 10(5), 4950-4967. doi:10.3390/s100504950
Radjenović, B., & Radmilović-Radjenović, M. (2011). Three-Dimensional Simulations of the Anisotropic Etching Profile Evolution for Producing Nanoscale Devices. Acta Physica Polonica A, 119(3), 447-450. doi:10.12693/aphyspola.119.447
Crandall, M. G., & Lions, P.-L. (1984). Two approximations of solutions of Hamilton-Jacobi equations. Mathematics of Computation, 43(167), 1-1. doi:10.1090/s0025-5718-1984-0744921-8
Whitaker, R. T. (1998). International Journal of Computer Vision, 29(3), 203-231. doi:10.1023/a:1008036829907
Gomes, J., & Faugeras, O. (2000). Reconciling Distance Functions and Level Sets. Journal of Visual Communication and Image Representation, 11(2), 209-223. doi:10.1006/jvci.1999.0439
Fukuzawa, K., Terada, S., Shikida, M., Amakawa, H., Zhang, H., & Mitsuya, Y. (2007). Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy. Journal of Applied Physics, 101(3), 034308. doi:10.1063/1.2434825
Schröpfer, G., Labachelerie, M. de, Ballandras, S., & Blind, P. (1998). Collective wet etching of a 3D monolithic silicon seismic mass system. Journal of Micromechanics and Microengineering, 8(2), 77-79. doi:10.1088/0960-1317/8/2/008
Wilke, N., Reed, M. L., & Morrissey, A. (2006). The evolution from convex corner undercut towards microneedle formation: theory and experimental verification. Journal of Micromechanics and Microengineering, 16(4), 808-814. doi:10.1088/0960-1317/16/4/018
Liang, J., Kohsaka, F., Matsuo, T., & Ueda, T. (2007). Wet Etched High Aspect Ratio Microstructures on Quartz for MEMS Applications. IEEJ Transactions on Sensors and Micromachines, 127(7), 337-342. doi:10.1541/ieejsmas.127.337
Hida, H., Shikida, M., Fukuzawa, K., Murakami, S., Sato, K., Asaumi, K., … Sato, K. (2008). Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems. Sensors and Actuators A: Physical, 148(1), 311-318. doi:10.1016/j.sna.2008.08.021
[-]