Mostrar el registro sencillo del ítem
dc.contributor.author | Montoliu, C | es_ES |
dc.contributor.author | Ferrando Jódar, Néstor | es_ES |
dc.contributor.author | Gosalvez Ayuso, Miguel Angel | es_ES |
dc.contributor.author | Cerdá Boluda, Joaquín | es_ES |
dc.contributor.author | Colom Palero, Ricardo José | es_ES |
dc.date.accessioned | 2015-11-05T10:01:25Z | |
dc.date.available | 2015-11-05T10:01:25Z | |
dc.date.issued | 2013-07 | |
dc.identifier.issn | 0960-1317 | |
dc.identifier.uri | http://hdl.handle.net/10251/57067 | |
dc.description.abstract | The use of atomistic methods, such as the continuous cellular automaton (CCA), is currently regarded as an accurate and efficient approach for the simulation of anisotropic etching in the development of micro-electro-mechanical systems (MEMS). However, whenever the targeted etching condition is modified (e. g. by changing the substrate material, etchant type, concentration and/or temperature) this approach requires performing a time-consuming recalibration of the full set of internal atomistic rates defined within the method. Based on the level set (LS) approach as an alternative and using the experimental data directly as input, we present a fully operational simulator that exhibits similar accuracy to the latest CCA models. The proposed simulator is tested by describing a wide range of silicon and quartz MEMS structures obtained in different etchants through complex processes, including double-sided etching as well as different mask patterns during different etching steps and/or simultaneous masking materials on different regions of the substrate. The results demonstrate that the LS method is able to simulate anisotropic etching for complex MEMS processes with similar computational times and accuracy as the atomistic models. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish FPI-MICINN BES-2011-045940 grant and the Ramon y Cajal Fellowship Program by the Spanish Ministry of Science and Innovation. Also, we acknowledge support by the JAE-Doc grant from the Junta para la Ampliacion de Estudios program co-funded by FSE and the Professor Partnership Program by NVIDIA Corporation. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Journal of Micromechanics and Microengineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | SINGLE-CRYSTAL SILICON | es_ES |
dc.subject | UNIFIED MODEL | es_ES |
dc.subject | 3-DIMENSIONAL SIMULATIONS | es_ES |
dc.subject | CELLULAR-AUTOMATON | es_ES |
dc.subject | KOH | es_ES |
dc.subject | LITHOGRAPHY | es_ES |
dc.subject | DEPOSITION | es_ES |
dc.subject | ALGORITHMS | es_ES |
dc.subject | MORPHOLOGY | es_ES |
dc.subject | EVOLUTION | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0960-1317/23/7/075017 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2011-045940/ES/BES-2011-045940/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Montoliu, C.; Ferrando Jódar, N.; Gosalvez Ayuso, MA.; Cerdá Boluda, J.; Colom Palero, RJ. (2013). Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining. Journal of Micromechanics and Microengineering. 23(7). https://doi.org/10.1088/0960-1317/23/7/075017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/0960-1317/23/7/075017 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 256962 | es_ES |
dc.identifier.eissn | 1361-6439 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Nvidia | es_ES |
dc.description.references | Weirauch, D. F. (1975). Correlation of the anisotropic etching of single−crystal silicon spheres and wafers. Journal of Applied Physics, 46(4), 1478-1483. doi:10.1063/1.321787 | es_ES |
dc.description.references | Seidel, H. (1990). Anisotropic Etching of Crystalline Silicon in Alkaline Solutions. Journal of The Electrochemical Society, 137(11), 3612. doi:10.1149/1.2086277 | es_ES |
dc.description.references | Zielke, D., & Frühauf, J. (1995). Determination of rates for orientation-dependent etching. Sensors and Actuators A: Physical, 48(2), 151-156. doi:10.1016/0924-4247(95)00993-0 | es_ES |
dc.description.references | Wind, R. A., & Hines, M. A. (2000). Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surface Science, 460(1-3), 21-38. doi:10.1016/s0039-6028(00)00479-9 | es_ES |
dc.description.references | Gosálvez, M. A., Sato, K., Foster, A. S., Nieminen, R. M., & Tanaka, H. (2007). An atomistic introduction to anisotropic etching. Journal of Micromechanics and Microengineering, 17(4), S1-S26. doi:10.1088/0960-1317/17/4/s01 | es_ES |
dc.description.references | Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y., & Yamamoto, M. (1998). Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sensors and Actuators A: Physical, 64(1), 87-93. doi:10.1016/s0924-4247(97)01658-0 | es_ES |
dc.description.references | Zubel, I., & Kramkowska, M. (2002). The effect of alcohol additives on etching characteristics in KOH solutions. Sensors and Actuators A: Physical, 101(3), 255-261. doi:10.1016/s0924-4247(02)00265-0 | es_ES |
dc.description.references | Charbonnieras, A. R., & Tellier, C. R. (1999). Characterization of the anisotropic chemical attack of {hk0} silicon plates in a T.M.A.H. solution. Sensors and Actuators A: Physical, 77(2), 81-97. doi:10.1016/s0924-4247(99)00020-5 | es_ES |
dc.description.references | Shikida, M., Sato, K., Tokoro, K., & Uchikawa, D. (2000). Differences in anisotropic etching properties of KOH and TMAH solutions. Sensors and Actuators A: Physical, 80(2), 179-188. doi:10.1016/s0924-4247(99)00264-2 | es_ES |
dc.description.references | Gosálvez, M. A., Zubel, I., & Viinikka, E. (2010). Wet Etching of Silicon. Handbook of Silicon Based MEMS Materials and Technologies, 375-407. doi:10.1016/b978-0-8155-1594-4.00024-3 | es_ES |
dc.description.references | Pal, P., Gosalvez, M. A., & Sato, K. (2010). Silicon Micromachining Based on Surfactant-Added Tetramethyl Ammonium Hydroxide: Etching Mechanism and Advanced Applications. Japanese Journal of Applied Physics, 49(5), 056702. doi:10.1143/jjap.49.056702 | es_ES |
dc.description.references | Zubel, I., & Kramkowska, M. (2004). Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sensors and Actuators A: Physical, 115(2-3), 549-556. doi:10.1016/j.sna.2003.11.010 | es_ES |
dc.description.references | Fruhauf, J., Trautmann, K., Wittig, J., & Zielke, D. (1993). A simulation tool for orientation dependent etching. Journal of Micromechanics and Microengineering, 3(3), 113-115. doi:10.1088/0960-1317/3/3/004 | es_ES |
dc.description.references | Than, O., & Büttgenbach, S. (1994). Simulation of anisotropic chemical etching of crystalline silicon using a cellular automata model. Sensors and Actuators A: Physical, 45(1), 85-89. doi:10.1016/0924-4247(94)00820-5 | es_ES |
dc.description.references | Camon, H., Gue, A. M., Danel, J. S., & Djafari-Rouhani, M. (1992). Modelling of anisotropic etching in silicon-based sensor application. Sensors and Actuators A: Physical, 33(1-2), 103-105. doi:10.1016/0924-4247(92)80237-w | es_ES |
dc.description.references | Gosalvez, M. ., Nieminen, R. ., Kilpinen, P., Haimi, E., & Lindroos, V. (2001). Anisotropic wet chemical etching of crystalline silicon: atomistic Monte-Carlo simulations and experiments. Applied Surface Science, 178(1-4), 7-26. doi:10.1016/s0169-4332(01)00233-1 | es_ES |
dc.description.references | Zhenjun Zhu, & Chang Liu. (2000). Micromachining process simulation using a continuous cellular automata method. Journal of Microelectromechanical Systems, 9(2), 252-261. doi:10.1109/84.846706 | es_ES |
dc.description.references | Gosalvez, M. A., Yan Xing, & Sato, K. (2008). Analytical Solution of the Continuous Cellular Automaton for Anisotropic Etching. Journal of Microelectromechanical Systems, 17(2), 410-431. doi:10.1109/jmems.2008.916339 | es_ES |
dc.description.references | Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Faster and exact implementation of the continuous cellular automaton for anisotropic etching simulations. Journal of Micromechanics and Microengineering, 21(2), 025021. doi:10.1088/0960-1317/21/2/025021 | es_ES |
dc.description.references | Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Computer Physics Communications, 182(3), 628-640. doi:10.1016/j.cpc.2010.11.004 | es_ES |
dc.description.references | Moktadir, Z., & Camon, H. (1997). Monte Carlo simulation of anisotropic etching of silicon: investigation of surface properties. Modelling and Simulation in Materials Science and Engineering, 5(5), 481-488. doi:10.1088/0965-0393/5/5/004 | es_ES |
dc.description.references | Flidr, J., Huang, Y.-C., & Hines, M. A. (1999). An atomistic mechanism for the production of two- and three-dimensional etch hillocks on Si(111) surfaces. The Journal of Chemical Physics, 111(15), 6970-6981. doi:10.1063/1.479990 | es_ES |
dc.description.references | Gos lvez, M. A., & Nieminen, R. M. (2003). Surface morphology during anisotropic wet chemical etching of crystalline silicon. New Journal of Physics, 5, 100-100. doi:10.1088/1367-2630/5/1/400 | es_ES |
dc.description.references | Xing, Y., Gosálvez, M. A., Sato, K., Tian, M., & Yi, H. (2012). Evolutionary determination of kinetic Monte Carlo rates for the simulation of evolving surfaces in anisotropic etching of silicon. Journal of Micromechanics and Microengineering, 22(8), 085020. doi:10.1088/0960-1317/22/8/085020 | es_ES |
dc.description.references | Xing, Y., Gosálvez, M. A., Sato, K., & Yi, H. (2009). Orientation-dependent surface morphology of crystalline silicon during anisotropic etching using a continuous cellular automaton. Journal of Micromechanics and Microengineering, 20(1), 015019. doi:10.1088/0960-1317/20/1/015019 | es_ES |
dc.description.references | Zhou, Z., Huang, Q., Li, W., & Deng, W. (2007). A cellular automaton-based simulator for silicon anisotropic etching processes considering high index planes. Journal of Micromechanics and Microengineering, 17(4), S38-S49. doi:10.1088/0960-1317/17/4/s03 | es_ES |
dc.description.references | Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2009). Discrete and continuous cellular automata for the simulation of propagating surfaces. Sensors and Actuators A: Physical, 155(1), 98-112. doi:10.1016/j.sna.2009.08.012 | es_ES |
dc.description.references | Ferrando, N., Gosálvez, M. A., & Colóm, R. J. (2012). Evolutionary continuous cellular automaton for the simulation of wet etching of quartz. Journal of Micromechanics and Microengineering, 22(2), 025021. doi:10.1088/0960-1317/22/2/025021 | es_ES |
dc.description.references | Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12-49. doi:10.1016/0021-9991(88)90002-2 | es_ES |
dc.description.references | Adalsteinsson, D., & Sethian, J. A. (1995). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography I: Algorithms and Two-Dimensional Simulations. Journal of Computational Physics, 120(1), 128-144. doi:10.1006/jcph.1995.1153 | es_ES |
dc.description.references | Adalsteinsson, D., & Sethian, J. A. (1995). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography II: Three-Dimensional Simulations. Journal of Computational Physics, 122(2), 348-366. doi:10.1006/jcph.1995.1221 | es_ES |
dc.description.references | Adalsteinsson, D., & Sethian, J. A. (1997). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography. Journal of Computational Physics, 138(1), 193-223. doi:10.1006/jcph.1997.5817 | es_ES |
dc.description.references | Ertl, O., & Selberherr, S. (2009). A fast level set framework for large three-dimensional topography simulations. Computer Physics Communications, 180(8), 1242-1250. doi:10.1016/j.cpc.2009.02.002 | es_ES |
dc.description.references | Ertl, O., & Selberherr, S. (2010). Three-dimensional level set based Bosch process simulations using ray tracing for flux calculation. Microelectronic Engineering, 87(1), 20-29. doi:10.1016/j.mee.2009.05.011 | es_ES |
dc.description.references | Burzynski, T., & Papini, M. (2010). Level set methods for the modelling of surface evolution in the abrasive jet micromachining of features used in MEMS and microfluidic devices. Journal of Micromechanics and Microengineering, 20(8), 085004. doi:10.1088/0960-1317/20/8/085004 | es_ES |
dc.description.references | Radjenović, B., Lee, J. K., & Radmilović-Radjenović, M. (2006). Sparse field level set method for non-convex Hamiltonians in 3D plasma etching profile simulations. Computer Physics Communications, 174(2), 127-132. doi:10.1016/j.cpc.2005.09.010 | es_ES |
dc.description.references | Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2006). Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon. Applied Physics Letters, 89(21), 213102. doi:10.1063/1.2388860 | es_ES |
dc.description.references | Branislav, R., & Marija, R.-R. (2010). Level set simulations of the anisotropic wet etching process for device fabrication in nanotechnologies. Hemijska industrija, 64(2), 93-97. doi:10.2298/hemind100205008r | es_ES |
dc.description.references | Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2010). Level Set Approach to Anisotropic Wet Etching of Silicon. Sensors, 10(5), 4950-4967. doi:10.3390/s100504950 | es_ES |
dc.description.references | Radjenović, B., & Radmilović-Radjenović, M. (2011). Three-Dimensional Simulations of the Anisotropic Etching Profile Evolution for Producing Nanoscale Devices. Acta Physica Polonica A, 119(3), 447-450. doi:10.12693/aphyspola.119.447 | es_ES |
dc.description.references | Crandall, M. G., & Lions, P.-L. (1984). Two approximations of solutions of Hamilton-Jacobi equations. Mathematics of Computation, 43(167), 1-1. doi:10.1090/s0025-5718-1984-0744921-8 | es_ES |
dc.description.references | Whitaker, R. T. (1998). International Journal of Computer Vision, 29(3), 203-231. doi:10.1023/a:1008036829907 | es_ES |
dc.description.references | Gomes, J., & Faugeras, O. (2000). Reconciling Distance Functions and Level Sets. Journal of Visual Communication and Image Representation, 11(2), 209-223. doi:10.1006/jvci.1999.0439 | es_ES |
dc.description.references | Fukuzawa, K., Terada, S., Shikida, M., Amakawa, H., Zhang, H., & Mitsuya, Y. (2007). Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy. Journal of Applied Physics, 101(3), 034308. doi:10.1063/1.2434825 | es_ES |
dc.description.references | Schröpfer, G., Labachelerie, M. de, Ballandras, S., & Blind, P. (1998). Collective wet etching of a 3D monolithic silicon seismic mass system. Journal of Micromechanics and Microengineering, 8(2), 77-79. doi:10.1088/0960-1317/8/2/008 | es_ES |
dc.description.references | Wilke, N., Reed, M. L., & Morrissey, A. (2006). The evolution from convex corner undercut towards microneedle formation: theory and experimental verification. Journal of Micromechanics and Microengineering, 16(4), 808-814. doi:10.1088/0960-1317/16/4/018 | es_ES |
dc.description.references | Liang, J., Kohsaka, F., Matsuo, T., & Ueda, T. (2007). Wet Etched High Aspect Ratio Microstructures on Quartz for MEMS Applications. IEEJ Transactions on Sensors and Micromachines, 127(7), 337-342. doi:10.1541/ieejsmas.127.337 | es_ES |
dc.description.references | Hida, H., Shikida, M., Fukuzawa, K., Murakami, S., Sato, K., Asaumi, K., … Sato, K. (2008). Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems. Sensors and Actuators A: Physical, 148(1), 311-318. doi:10.1016/j.sna.2008.08.021 | es_ES |