- -

Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Montoliu, C es_ES
dc.contributor.author Ferrando Jódar, Néstor es_ES
dc.contributor.author Gosalvez Ayuso, Miguel Angel es_ES
dc.contributor.author Cerdá Boluda, Joaquín es_ES
dc.contributor.author Colom Palero, Ricardo José es_ES
dc.date.accessioned 2015-11-05T10:01:25Z
dc.date.available 2015-11-05T10:01:25Z
dc.date.issued 2013-07
dc.identifier.issn 0960-1317
dc.identifier.uri http://hdl.handle.net/10251/57067
dc.description.abstract The use of atomistic methods, such as the continuous cellular automaton (CCA), is currently regarded as an accurate and efficient approach for the simulation of anisotropic etching in the development of micro-electro-mechanical systems (MEMS). However, whenever the targeted etching condition is modified (e. g. by changing the substrate material, etchant type, concentration and/or temperature) this approach requires performing a time-consuming recalibration of the full set of internal atomistic rates defined within the method. Based on the level set (LS) approach as an alternative and using the experimental data directly as input, we present a fully operational simulator that exhibits similar accuracy to the latest CCA models. The proposed simulator is tested by describing a wide range of silicon and quartz MEMS structures obtained in different etchants through complex processes, including double-sided etching as well as different mask patterns during different etching steps and/or simultaneous masking materials on different regions of the substrate. The results demonstrate that the LS method is able to simulate anisotropic etching for complex MEMS processes with similar computational times and accuracy as the atomistic models. es_ES
dc.description.sponsorship This work has been supported by the Spanish FPI-MICINN BES-2011-045940 grant and the Ramon y Cajal Fellowship Program by the Spanish Ministry of Science and Innovation. Also, we acknowledge support by the JAE-Doc grant from the Junta para la Ampliacion de Estudios program co-funded by FSE and the Professor Partnership Program by NVIDIA Corporation. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Journal of Micromechanics and Microengineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject SINGLE-CRYSTAL SILICON es_ES
dc.subject UNIFIED MODEL es_ES
dc.subject 3-DIMENSIONAL SIMULATIONS es_ES
dc.subject CELLULAR-AUTOMATON es_ES
dc.subject KOH es_ES
dc.subject LITHOGRAPHY es_ES
dc.subject DEPOSITION es_ES
dc.subject ALGORITHMS es_ES
dc.subject MORPHOLOGY es_ES
dc.subject EVOLUTION es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0960-1317/23/7/075017
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-045940/ES/BES-2011-045940/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Montoliu, C.; Ferrando Jódar, N.; Gosalvez Ayuso, MA.; Cerdá Boluda, J.; Colom Palero, RJ. (2013). Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining. Journal of Micromechanics and Microengineering. 23(7). https://doi.org/10.1088/0960-1317/23/7/075017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0960-1317/23/7/075017 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 256962 es_ES
dc.identifier.eissn 1361-6439
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Nvidia es_ES
dc.description.references Weirauch, D. F. (1975). Correlation of the anisotropic etching of single−crystal silicon spheres and wafers. Journal of Applied Physics, 46(4), 1478-1483. doi:10.1063/1.321787 es_ES
dc.description.references Seidel, H. (1990). Anisotropic Etching of Crystalline Silicon in Alkaline Solutions. Journal of The Electrochemical Society, 137(11), 3612. doi:10.1149/1.2086277 es_ES
dc.description.references Zielke, D., & Frühauf, J. (1995). Determination of rates for orientation-dependent etching. Sensors and Actuators A: Physical, 48(2), 151-156. doi:10.1016/0924-4247(95)00993-0 es_ES
dc.description.references Wind, R. A., & Hines, M. A. (2000). Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surface Science, 460(1-3), 21-38. doi:10.1016/s0039-6028(00)00479-9 es_ES
dc.description.references Gosálvez, M. A., Sato, K., Foster, A. S., Nieminen, R. M., & Tanaka, H. (2007). An atomistic introduction to anisotropic etching. Journal of Micromechanics and Microengineering, 17(4), S1-S26. doi:10.1088/0960-1317/17/4/s01 es_ES
dc.description.references Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y., & Yamamoto, M. (1998). Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sensors and Actuators A: Physical, 64(1), 87-93. doi:10.1016/s0924-4247(97)01658-0 es_ES
dc.description.references Zubel, I., & Kramkowska, M. (2002). The effect of alcohol additives on etching characteristics in KOH solutions. Sensors and Actuators A: Physical, 101(3), 255-261. doi:10.1016/s0924-4247(02)00265-0 es_ES
dc.description.references Charbonnieras, A. R., & Tellier, C. R. (1999). Characterization of the anisotropic chemical attack of {hk0} silicon plates in a T.M.A.H. solution. Sensors and Actuators A: Physical, 77(2), 81-97. doi:10.1016/s0924-4247(99)00020-5 es_ES
dc.description.references Shikida, M., Sato, K., Tokoro, K., & Uchikawa, D. (2000). Differences in anisotropic etching properties of KOH and TMAH solutions. Sensors and Actuators A: Physical, 80(2), 179-188. doi:10.1016/s0924-4247(99)00264-2 es_ES
dc.description.references Gosálvez, M. A., Zubel, I., & Viinikka, E. (2010). Wet Etching of Silicon. Handbook of Silicon Based MEMS Materials and Technologies, 375-407. doi:10.1016/b978-0-8155-1594-4.00024-3 es_ES
dc.description.references Pal, P., Gosalvez, M. A., & Sato, K. (2010). Silicon Micromachining Based on Surfactant-Added Tetramethyl Ammonium Hydroxide: Etching Mechanism and Advanced Applications. Japanese Journal of Applied Physics, 49(5), 056702. doi:10.1143/jjap.49.056702 es_ES
dc.description.references Zubel, I., & Kramkowska, M. (2004). Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sensors and Actuators A: Physical, 115(2-3), 549-556. doi:10.1016/j.sna.2003.11.010 es_ES
dc.description.references Fruhauf, J., Trautmann, K., Wittig, J., & Zielke, D. (1993). A simulation tool for orientation dependent etching. Journal of Micromechanics and Microengineering, 3(3), 113-115. doi:10.1088/0960-1317/3/3/004 es_ES
dc.description.references Than, O., & Büttgenbach, S. (1994). Simulation of anisotropic chemical etching of crystalline silicon using a cellular automata model. Sensors and Actuators A: Physical, 45(1), 85-89. doi:10.1016/0924-4247(94)00820-5 es_ES
dc.description.references Camon, H., Gue, A. M., Danel, J. S., & Djafari-Rouhani, M. (1992). Modelling of anisotropic etching in silicon-based sensor application. Sensors and Actuators A: Physical, 33(1-2), 103-105. doi:10.1016/0924-4247(92)80237-w es_ES
dc.description.references Gosalvez, M. ., Nieminen, R. ., Kilpinen, P., Haimi, E., & Lindroos, V. (2001). Anisotropic wet chemical etching of crystalline silicon: atomistic Monte-Carlo simulations and experiments. Applied Surface Science, 178(1-4), 7-26. doi:10.1016/s0169-4332(01)00233-1 es_ES
dc.description.references Zhenjun Zhu, & Chang Liu. (2000). Micromachining process simulation using a continuous cellular automata method. Journal of Microelectromechanical Systems, 9(2), 252-261. doi:10.1109/84.846706 es_ES
dc.description.references Gosalvez, M. A., Yan Xing, & Sato, K. (2008). Analytical Solution of the Continuous Cellular Automaton for Anisotropic Etching. Journal of Microelectromechanical Systems, 17(2), 410-431. doi:10.1109/jmems.2008.916339 es_ES
dc.description.references Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Faster and exact implementation of the continuous cellular automaton for anisotropic etching simulations. Journal of Micromechanics and Microengineering, 21(2), 025021. doi:10.1088/0960-1317/21/2/025021 es_ES
dc.description.references Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Computer Physics Communications, 182(3), 628-640. doi:10.1016/j.cpc.2010.11.004 es_ES
dc.description.references Moktadir, Z., & Camon, H. (1997). Monte Carlo simulation of anisotropic etching of silicon: investigation of surface properties. Modelling and Simulation in Materials Science and Engineering, 5(5), 481-488. doi:10.1088/0965-0393/5/5/004 es_ES
dc.description.references Flidr, J., Huang, Y.-C., & Hines, M. A. (1999). An atomistic mechanism for the production of two- and three-dimensional etch hillocks on Si(111) surfaces. The Journal of Chemical Physics, 111(15), 6970-6981. doi:10.1063/1.479990 es_ES
dc.description.references Gos lvez, M. A., & Nieminen, R. M. (2003). Surface morphology during anisotropic wet chemical etching of crystalline silicon. New Journal of Physics, 5, 100-100. doi:10.1088/1367-2630/5/1/400 es_ES
dc.description.references Xing, Y., Gosálvez, M. A., Sato, K., Tian, M., & Yi, H. (2012). Evolutionary determination of kinetic Monte Carlo rates for the simulation of evolving surfaces in anisotropic etching of silicon. Journal of Micromechanics and Microengineering, 22(8), 085020. doi:10.1088/0960-1317/22/8/085020 es_ES
dc.description.references Xing, Y., Gosálvez, M. A., Sato, K., & Yi, H. (2009). Orientation-dependent surface morphology of crystalline silicon during anisotropic etching using a continuous cellular automaton. Journal of Micromechanics and Microengineering, 20(1), 015019. doi:10.1088/0960-1317/20/1/015019 es_ES
dc.description.references Zhou, Z., Huang, Q., Li, W., & Deng, W. (2007). A cellular automaton-based simulator for silicon anisotropic etching processes considering high index planes. Journal of Micromechanics and Microengineering, 17(4), S38-S49. doi:10.1088/0960-1317/17/4/s03 es_ES
dc.description.references Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2009). Discrete and continuous cellular automata for the simulation of propagating surfaces. Sensors and Actuators A: Physical, 155(1), 98-112. doi:10.1016/j.sna.2009.08.012 es_ES
dc.description.references Ferrando, N., Gosálvez, M. A., & Colóm, R. J. (2012). Evolutionary continuous cellular automaton for the simulation of wet etching of quartz. Journal of Micromechanics and Microengineering, 22(2), 025021. doi:10.1088/0960-1317/22/2/025021 es_ES
dc.description.references Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12-49. doi:10.1016/0021-9991(88)90002-2 es_ES
dc.description.references Adalsteinsson, D., & Sethian, J. A. (1995). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography I: Algorithms and Two-Dimensional Simulations. Journal of Computational Physics, 120(1), 128-144. doi:10.1006/jcph.1995.1153 es_ES
dc.description.references Adalsteinsson, D., & Sethian, J. A. (1995). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography II: Three-Dimensional Simulations. Journal of Computational Physics, 122(2), 348-366. doi:10.1006/jcph.1995.1221 es_ES
dc.description.references Adalsteinsson, D., & Sethian, J. A. (1997). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography. Journal of Computational Physics, 138(1), 193-223. doi:10.1006/jcph.1997.5817 es_ES
dc.description.references Ertl, O., & Selberherr, S. (2009). A fast level set framework for large three-dimensional topography simulations. Computer Physics Communications, 180(8), 1242-1250. doi:10.1016/j.cpc.2009.02.002 es_ES
dc.description.references Ertl, O., & Selberherr, S. (2010). Three-dimensional level set based Bosch process simulations using ray tracing for flux calculation. Microelectronic Engineering, 87(1), 20-29. doi:10.1016/j.mee.2009.05.011 es_ES
dc.description.references Burzynski, T., & Papini, M. (2010). Level set methods for the modelling of surface evolution in the abrasive jet micromachining of features used in MEMS and microfluidic devices. Journal of Micromechanics and Microengineering, 20(8), 085004. doi:10.1088/0960-1317/20/8/085004 es_ES
dc.description.references Radjenović, B., Lee, J. K., & Radmilović-Radjenović, M. (2006). Sparse field level set method for non-convex Hamiltonians in 3D plasma etching profile simulations. Computer Physics Communications, 174(2), 127-132. doi:10.1016/j.cpc.2005.09.010 es_ES
dc.description.references Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2006). Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon. Applied Physics Letters, 89(21), 213102. doi:10.1063/1.2388860 es_ES
dc.description.references Branislav, R., & Marija, R.-R. (2010). Level set simulations of the anisotropic wet etching process for device fabrication in nanotechnologies. Hemijska industrija, 64(2), 93-97. doi:10.2298/hemind100205008r es_ES
dc.description.references Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2010). Level Set Approach to Anisotropic Wet Etching of Silicon. Sensors, 10(5), 4950-4967. doi:10.3390/s100504950 es_ES
dc.description.references Radjenović, B., & Radmilović-Radjenović, M. (2011). Three-Dimensional Simulations of the Anisotropic Etching Profile Evolution for Producing Nanoscale Devices. Acta Physica Polonica A, 119(3), 447-450. doi:10.12693/aphyspola.119.447 es_ES
dc.description.references Crandall, M. G., & Lions, P.-L. (1984). Two approximations of solutions of Hamilton-Jacobi equations. Mathematics of Computation, 43(167), 1-1. doi:10.1090/s0025-5718-1984-0744921-8 es_ES
dc.description.references Whitaker, R. T. (1998). International Journal of Computer Vision, 29(3), 203-231. doi:10.1023/a:1008036829907 es_ES
dc.description.references Gomes, J., & Faugeras, O. (2000). Reconciling Distance Functions and Level Sets. Journal of Visual Communication and Image Representation, 11(2), 209-223. doi:10.1006/jvci.1999.0439 es_ES
dc.description.references Fukuzawa, K., Terada, S., Shikida, M., Amakawa, H., Zhang, H., & Mitsuya, Y. (2007). Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy. Journal of Applied Physics, 101(3), 034308. doi:10.1063/1.2434825 es_ES
dc.description.references Schröpfer, G., Labachelerie, M. de, Ballandras, S., & Blind, P. (1998). Collective wet etching of a 3D monolithic silicon seismic mass system. Journal of Micromechanics and Microengineering, 8(2), 77-79. doi:10.1088/0960-1317/8/2/008 es_ES
dc.description.references Wilke, N., Reed, M. L., & Morrissey, A. (2006). The evolution from convex corner undercut towards microneedle formation: theory and experimental verification. Journal of Micromechanics and Microengineering, 16(4), 808-814. doi:10.1088/0960-1317/16/4/018 es_ES
dc.description.references Liang, J., Kohsaka, F., Matsuo, T., & Ueda, T. (2007). Wet Etched High Aspect Ratio Microstructures on Quartz for MEMS Applications. IEEJ Transactions on Sensors and Micromachines, 127(7), 337-342. doi:10.1541/ieejsmas.127.337 es_ES
dc.description.references Hida, H., Shikida, M., Fukuzawa, K., Murakami, S., Sato, K., Asaumi, K., … Sato, K. (2008). Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems. Sensors and Actuators A: Physical, 148(1), 311-318. doi:10.1016/j.sna.2008.08.021 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem