- -

One-Pot Multifunctional Catalysis with NNN-Pincer Zr-MOF: Zr Base Catalyzed Condensation with Rh-Catalyzed Hydrogenation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-Pot Multifunctional Catalysis with NNN-Pincer Zr-MOF: Zr Base Catalyzed Condensation with Rh-Catalyzed Hydrogenation

Mostrar el registro completo del ítem

Rasero Almansa, AM.; Corma Canós, A.; Iglesias, M.; Sánchez Alonso, F. (2013). One-Pot Multifunctional Catalysis with NNN-Pincer Zr-MOF: Zr Base Catalyzed Condensation with Rh-Catalyzed Hydrogenation. ChemCatChem. 5(10):3092-3100. https://doi.org/10.1002/cctc.201300371

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57691

Ficheros en el ítem

Metadatos del ítem

Título: One-Pot Multifunctional Catalysis with NNN-Pincer Zr-MOF: Zr Base Catalyzed Condensation with Rh-Catalyzed Hydrogenation
Autor: Rasero Almansa, Antonia Maria Corma Canós, Avelino Iglesias, Marta Sánchez Alonso, Felix
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
We describe the postsynthetic modification of Zr-based metal organic frameworks (MOFs) containing chiral NNN-pincer ligands based on aminopyridineimines, as well as the subsequent formation of (NNN)-M-Zr-MOF complexes ...[+]
Palabras clave: domino reactions , heterogenized catalysts , metal organic frameworks , postfunctionalization
Derechos de uso: Cerrado
Fuente:
ChemCatChem. (issn: 1867-3880 )
DOI: 10.1002/cctc.201300371
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cctc.201300371
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-02/ES/MATERIALES HIBRIDOS ORGANO-INORGANICOS COMO CATALIZADORES SELECTIVOS RECICLABLES/
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ /
Agradecimientos:
We thank the Ministerio de Economia y Competitividad (MINECO) of Spain (project no. MAT2011-29020-C02-02) and Consolider-Ingenio 2010 Program (CSD-0050-MULTICAT) for the financial support. A.M.R.-A. thanks MINECO for the ...[+]
Tipo: Artículo

References

Corma, A. (2004). Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catalysis Reviews, 46(3-4), 369-417. doi:10.1081/cr-200036732

Baleizão, C., & Garcia, H. (2006). Chiral Salen Complexes:  An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts. Chemical Reviews, 106(9), 3987-4043. doi:10.1021/cr050973n

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z [+]
Corma, A. (2004). Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catalysis Reviews, 46(3-4), 369-417. doi:10.1081/cr-200036732

Baleizão, C., & Garcia, H. (2006). Chiral Salen Complexes:  An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts. Chemical Reviews, 106(9), 3987-4043. doi:10.1021/cr050973n

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294. doi:10.1039/b802256a

Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477. doi:10.1039/b802426j

Gücüyener, C., van den Bergh, J., Gascon, J., & Kapteijn, F. (2010). Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal−Organic Framework ZIF-7 through a Gate-Opening Mechanism. Journal of the American Chemical Society, 132(50), 17704-17706. doi:10.1021/ja1089765

Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650

Yaghi, O. M. (2007). A tale of two entanglements. Nature Materials, 6(2), 92-93. doi:10.1038/nmat1824

Ma, L., Abney, C., & Lin, W. (2009). Enantioselective catalysis with homochiral metal–organic frameworks. Chemical Society Reviews, 38(5), 1248. doi:10.1039/b807083k

Long, J. R., & Yaghi, O. M. (2009). The pervasive chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1213. doi:10.1039/b903811f

Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffe, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1257. doi:10.1039/b817735j

Jiang, H.-L., & Xu, Q. (2011). Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 47(12), 3351. doi:10.1039/c0cc05419d

Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019

McKinlay, A. C., Morris, R. E., Horcajada, P., Férey, G., Gref, R., Couvreur, P., & Serre, C. (2010). Bio-MOFs: Metall-organische Gerüste für biologische und medizinische Anwendungen. Angewandte Chemie, 122(36), 6400-6406. doi:10.1002/ange.201000048

McKinlay, A. C., Morris, R. E., Horcajada, P., Férey, G., Gref, R., Couvreur, P., & Serre, C. (2010). BioMOFs: Metal-Organic Frameworks for Biological and Medical Applications. Angewandte Chemie International Edition, 49(36), 6260-6266. doi:10.1002/anie.201000048

Wang, C., Zheng, M., & Lin, W. (2011). Asymmetric Catalysis with Chiral Porous Metal–Organic Frameworks: Critical Issues. The Journal of Physical Chemistry Letters, 2(14), 1701-1709. doi:10.1021/jz200492d

Pintado-Sierra, M., Rasero-Almansa, A. M., Corma, A., Iglesias, M., & Sánchez, F. (2013). Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 299, 137-145. doi:10.1016/j.jcat.2012.12.004

Arnanz, A., Pintado-Sierra, M., Corma, A., Iglesias, M., & Sánchez, F. (2012). Bifunctional Metal Organic Framework Catalysts for Multistep Reactions: MOF-Cu(BTC)-[Pd] Catalyst for One-Pot Heteroannulation of Acetylenic Compounds. Advanced Synthesis & Catalysis, 354(7), 1347-1355. doi:10.1002/adsc.201100503

Cirujano, F. G., Llabrés i Xamena, F. X., & Corma, A. (2012). MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Transactions, 41(14), 4249. doi:10.1039/c2dt12480g

Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084

Cirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878

Pan, Y., Yuan, B., Li, Y., & He, D. (2010). Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 46(13), 2280. doi:10.1039/b922061e

Wu, P., Wang, J., Li, Y., He, C., Xie, Z., & Duan, C. (2011). Luminescent Sensing and Catalytic Performances of a Multifunctional Lanthanide-Organic Framework Comprising a Triphenylamine Moiety. Advanced Functional Materials, 21(14), 2788-2794. doi:10.1002/adfm.201100115

LLABRESIXAMENA, F., ABAD, A., CORMA, A., & GARCIA, H. (2007). MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 250(2), 294-298. doi:10.1016/j.jcat.2007.06.004

LLABRESIXAMENA, F., CASANOVA, O., GALIASSOTAILLEUR, R., GARCIA, H., & CORMA, A. (2008). Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 255(2), 220-227. doi:10.1016/j.jcat.2008.02.011

Gándara, F., Puebla, E. G., Iglesias, M., Proserpio, D. M., Snejko, N., & Monge, M. A. (2009). Controlling the Structure of Arenedisulfonates toward Catalytically Active Materials. Chemistry of Materials, 21(4), 655-661. doi:10.1021/cm8029517

Monge, Á., Gándara, F., Gutiérrez-Puebla, E., & Snejko, N. (2011). Lanthanide, Y and Sc MOFs: where amazing crystal structures meet outstanding material properties. CrystEngComm, 13(16), 5031. doi:10.1039/c0ce00891e

D’Vries, R. F., Iglesias, M., Snejko, N., Alvarez-Garcia, S., Gutiérrez-Puebla, E., & Monge, M. A. (2012). Mixed lanthanide succinate–sulfate 3D MOFs: catalysts in nitroaromatic reduction reactions and emitting materials. J. Mater. Chem., 22(3), 1191-1198. doi:10.1039/c1jm14677g

Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u

Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p

Schaate, A., Roy, P., Godt, A., Lippke, J., Waltz, F., Wiebcke, M., & Behrens, P. (2011). Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry - A European Journal, 17(24), 6643-6651. doi:10.1002/chem.201003211

Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601v

Morris, W., Doonan, C. J., & Yaghi, O. M. (2011). Postsynthetic Modification of a Metal–Organic Framework for Stabilization of a Hemiaminal and Ammonia Uptake. Inorganic Chemistry, 50(15), 6853-6855. doi:10.1021/ic200744y

Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d

Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990d

Rybtchinski, B., & Milstein, D. (1999). Metallinsertion in C-C-Bindungen in Lösung. Angewandte Chemie, 111(7), 918-932. doi:10.1002/(sici)1521-3757(19990401)111:7<918::aid-ange918>3.0.co;2-x

Rybtchinski, B., & Milstein, D. (1999). Metal Insertion into C−C Bonds in Solution. Angewandte Chemie International Edition, 38(7), 870-883. doi:10.1002/(sici)1521-3773(19990401)38:7<870::aid-anie870>3.0.co;2-3

Zhao, J. (2005). Oxidative Addition of Ammonia to Form a Stable Monomeric Amido Hydride Complex. Science, 307(5712), 1080-1082. doi:10.1126/science.1109389

Kanzelberger, M., Singh, B., Czerw, M., Krogh-Jespersen, K., & Goldman, A. S. (2000). Addition of C−H Bonds to the Catalytically Active Complex (PCP)Ir (PCP = η3-2,6-(tBu2PCH2)2C6H3). Journal of the American Chemical Society, 122(44), 11017-11018. doi:10.1021/ja001626s

Gusev, D. G., Fontaine, F.-G., Lough, A. J., & Zargarian, D. (2003). Angewandte Chemie, 115(2), 226-229. doi:10.1002/ange.200390050

Gusev, D. G., Fontaine, F.-G., Lough, A. J., & Zargarian, D. (2003). Polyhydrido(silylene)osmium and Silyl(dinitrogen)ruthenium Products Through Redistribution of Phenylsilane with Osmium and Ruthenium Pincer Complexes. Angewandte Chemie International Edition, 42(2), 216-219. doi:10.1002/anie.200390082

Agapie, T., & Bercaw, J. E. (2007). Cyclometalated Tantalum Diphenolate Pincer Complexes:  Intramolecular C−H/M−CH3σ-Bond Metathesis May Be Faster than O−H/M−CH3Protonolysis. Organometallics, 26(12), 2957-2959. doi:10.1021/om700284c

Ingleson, M. J., Fullmer, B. C., Buschhorn, D. T., Fan, H., Pink, M., Huffman, J. C., & Caulton, K. G. (2008). Influence of the d-Electron Count on CO Binding by Three-Coordinate [(tBu2PCH2SiMe2)2N]Fe, -Co, and -Ni. Inorganic Chemistry, 47(2), 407-409. doi:10.1021/ic7023764

Ingleson, M., Fan, H., Pink, M., Tomaszewski, J., & Caulton, K. G. (2006). Three-Coordinate Co(I) Provides Access to Unsaturated Dihydrido-Co(III) and Seven-Coordinate Co(V). Journal of the American Chemical Society, 128(6), 1804-1805. doi:10.1021/ja0572452

Ingleson, M. J., Pink, M., & Caulton, K. G. (2006). Reducing Power of Three-Coordinate Cobalt(I). Journal of the American Chemical Society, 128(13), 4248-4249. doi:10.1021/ja0607279

Gozin, M., Aizenberg, M., Liou, S.-Y., Weisman, A., Ben-David, Y., & Milstein, D. (1994). Transfer of methylene groups promoted by metal complexation. Nature, 370(6484), 42-44. doi:10.1038/370042a0

Grove, D. M., Van Koten, G., Mul, P., Van der Zeijden, A. A. H., Terheijden, J., Zoutberg, M. C., & Stam, C. H. (1986). Arylnickel(III) species containing nitrogen trioxide, nitrogen dioxide, and thiocyanate ligands. ESR data and the x-ray crystal structure of hexacoordinate (pyridine)bis(thiocyanato)[o,o’-bis{(dimethylamino)methyl}phenyl]nickel(III). Organometallics, 5(2), 322-326. doi:10.1021/om00133a022

Gusev, D. G., Maxwell, T., Dolgushin, F. M., Lyssenko, M., & Lough, A. J. (2002). Alkylidene and Vinylidene «Pincer» Complexes from Reactions of Alkynes with Ruthenium and Osmium Hydrides. Organometallics, 21(6), 1095-1100. doi:10.1021/om010771r

Gusev, D. G., Madott, M., Dolgushin, F. M., Lyssenko, K. A., & Antipin, M. Y. (2000). Agostic Bonding in Pincer Complexes of Ruthenium. Organometallics, 19(9), 1734-1739. doi:10.1021/om000085c

A. Hosokawa O. Ikeda N. Minami N. Kyomura 1993

F. Al-Obeidi M. Lebl J. A. Ostrem P. Safar A. Stierandova P. Strop A. Walser 2004

Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953

Kim, M., & Cohen, S. M. (2012). Discovery, development, and functionalization of Zr(iv)-based metal–organic frameworks. CrystEngComm, 14(12), 4096-4104. doi:10.1039/c2ce06491j

Yang, Q., Wiersum, A. D., Llewellyn, P. L., Guillerm, V., Serre, C., & Maurin, G. (2011). Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chemical Communications, 47(34), 9603. doi:10.1039/c1cc13543k

Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., & García, H. (2010). Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 16(36), 11133-11138. doi:10.1002/chem.200903526

Morris, W., Doonan, C. J., Furukawa, H., Banerjee, R., & Yaghi, O. M. (2008). Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 130(38), 12626-12627. doi:10.1021/ja805222x

Rood, J. A., Noll, B. C., & Henderson, K. W. (2009). A homochiral metal-organic framework with amino-functionalized pores. Main Group Chemistry, 8(4), 237-250. doi:10.1080/10241220903125989

Canivet, J., Aguado, S., Daniel, C., & Farrusseng, D. (2011). Engineering the Environment of a Catalytic Metal-Organic Framework by Postsynthetic Hydrophobization. ChemCatChem, 3(4), 675-678. doi:10.1002/cctc.201000386

Doonan, C. J., Morris, W., Furukawa, H., & Yaghi, O. M. (2009). Isoreticular Metalation of Metal−Organic Frameworks. Journal of the American Chemical Society, 131(27), 9492-9493. doi:10.1021/ja903251e

Tanabe, K. K., & Cohen, S. M. (2009). Engineering a Metal-Organic Framework Catalyst by Using Postsynthetic Modification. Angewandte Chemie, 121(40), 7560-7563. doi:10.1002/ange.200903433

Tanabe, K. K., & Cohen, S. M. (2009). Engineering a Metal-Organic Framework Catalyst by Using Postsynthetic Modification. Angewandte Chemie International Edition, 48(40), 7424-7427. doi:10.1002/anie.200903433

Servalli, M., Ranocchiari, M., & Van Bokhoven, J. A. (2012). Fast and high yield post-synthetic modification of metal–organic frameworks by vapor diffusion. Chemical Communications, 48(13), 1904. doi:10.1039/c2cc17461h

Kandiah, M., Usseglio, S., Svelle, S., Olsbye, U., Lillerud, K. P., & Tilset, M. (2010). Post-synthetic modification of the metal–organic framework compound UiO-66. Journal of Materials Chemistry, 20(44), 9848. doi:10.1039/c0jm02416c

Ingleson, M. J., Perez Barrio, J., Guilbaud, J.-B., Khimyak, Y. Z., & Rosseinsky, M. J. (2008). Framework functionalisation triggers metal complex binding. Chemical Communications, (23), 2680. doi:10.1039/b718367d

Bhattacharjee, S., Yang, D.-A., & Ahn, W.-S. (2011). A new heterogeneous catalyst for epoxidation of alkenes via one-step post-functionalization of IRMOF-3 with a manganese(ii) acetylacetonate complex. Chemical Communications, 47(12), 3637. doi:10.1039/c1cc00069a

Zhang, X., Llabrés i Xamena, F. X., & Corma, A. (2009). Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 265(2), 155-160. doi:10.1016/j.jcat.2009.04.021

Chavan, S., Vitillo, J. G., Gianolio, D., Zavorotynska, O., Civalleri, B., Jakobsen, S., … Bordiga, S. (2012). H2storage in isostructural UiO-67 and UiO-66 MOFs. Phys. Chem. Chem. Phys., 14(5), 1614-1626. doi:10.1039/c1cp23434j

Wang, C., Xie, Z., deKrafft, K. E., & Lin, W. (2011). Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 133(34), 13445-13454. doi:10.1021/ja203564w

Fujita, M., Kwon, Y. J., Washizu, S., & Ogura, K. (1994). Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4’-Bipyridine. Journal of the American Chemical Society, 116(3), 1151-1152. doi:10.1021/ja00082a055

Wu, C.-D., Hu, A., Zhang, L., & Lin, W. (2005). A Homochiral Porous Metal−Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 127(25), 8940-8941. doi:10.1021/ja052431t

Gómez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M. A., Ruiz-Valero, C., & Snejko, N. (2005). Novel 2D and 3D Indium Metal-Organic Frameworks:  Topology and Catalytic Properties†. Chemistry of Materials, 17(10), 2568-2573. doi:10.1021/cm047748r

SATO, T., MORI, W., KATO, C., YANAOKA, E., KURIBAYASHI, T., OHTERA, R., & SHIRAISHI, Y. (2005). Novel microporous rhodium(II) carboxylate polymer complexes containing metalloporphyrin: syntheses and catalytic performances in hydrogenation of olefins. Journal of Catalysis, 232(1), 186-198. doi:10.1016/j.jcat.2005.02.007

Chen, B., Ockwig, N. W., Millward, A. R., Contreras, D. S., & Yaghi, O. M. (2005). High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. Angewandte Chemie, 117(30), 4823-4827. doi:10.1002/ange.200462787

Chen, B., Ockwig, N. W., Millward, A. R., Contreras, D. S., & Yaghi, O. M. (2005). High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. Angewandte Chemie International Edition, 44(30), 4745-4749. doi:10.1002/anie.200462787

Cho, S.-H., Ma, B., Nguyen, S. T., Hupp, J. T., & Albrecht-Schmitt, T. E. (2006). A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun., (24), 2563-2565. doi:10.1039/b600408c

Vimont, A., Goupil, J.-M., Lavalley, J.-C., Daturi, M., Surblé, S., Serre, C., … Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218-3227. doi:10.1021/ja056906s

Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J., & Kim, K. (2000). A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature, 404(6781), 982-986. doi:10.1038/35010088

Uemura, T., Kitaura, R., Ohta, Y., Nagaoka, M., & Kitagawa, S. (2006). Nanochannel-Promoted Polymerization of Substituted Acetylenes in Porous Coordination Polymers. Angewandte Chemie, 118(25), 4218-4222. doi:10.1002/ange.200600333

Uemura, T., Kitaura, R., Ohta, Y., Nagaoka, M., & Kitagawa, S. (2006). Nanochannel-Promoted Polymerization of Substituted Acetylenes in Porous Coordination Polymers. Angewandte Chemie International Edition, 45(25), 4112-4116. doi:10.1002/anie.200600333

Shin, D. M., Lee, I. S., & Chung, Y. K. (2006). Rational Synthesis and Characterization of Robust Microporous Metal−Organic Frameworks with Base Functionality. Crystal Growth & Design, 6(5), 1059-1061. doi:10.1021/cg0504399

Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y

Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Seo, H., Yoon, M., Kim, J., … Férey, G. (2009). Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101. Applied Catalysis A: General, 358(2), 249-253. doi:10.1016/j.apcata.2009.02.018

Lun, D. J., Waterhouse, G. I. N., & Telfer, S. G. (2011). A General Thermolabile Protecting Group Strategy for Organocatalytic Metal−Organic Frameworks. Journal of the American Chemical Society, 133(15), 5806-5809. doi:10.1021/ja202223d

Catal. Sci. Technol.

Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie, 124(20), 4971-4974. doi:10.1002/ange.201108565

Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565

Lehnert, W. (1972). Knoevenagel-kondensationen mit titantetrachlorid/base—II. Tetrahedron, 28(3), 663-666. doi:10.1016/0040-4020(72)84029-8

Shipchandler, M. T. (1979). The Utility of Nitroacetic Acid and its Esters in Organic Synthesis. Synthesis, 1979(09), 666-686. doi:10.1055/s-1979-28790

Shen, B., & Johnston, J. N. (2008). A Formal Enantioselective Acetate Mannich Reaction: The Nitro Functional Group as a Traceless Agent for Activation and Enantiocontrol in the Synthesis of β-Amino Acids. Organic Letters, 10(20), 4397-4400. doi:10.1021/ol801797h

Fornicola, R. S., Oblinger, E., & Montgomery, J. (1998). A New Synthesis of α-Amino Acid Derivatives Employing Methyl Nitroacetate as a Versatile Glycine Template. The Journal of Organic Chemistry, 63(11), 3528-3529. doi:10.1021/jo980477h

Umezawa, S., & Zen, S. (1963). Synthetic Studies of the Derivatives of Nitroacetic Acid. I. The Preparation of Nitroacetic Ester and the Synthesis of α,β-Unsaturated α-Nitrocarboxylic Esters. Bulletin of the Chemical Society of Japan, 36(9), 1143-1145. doi:10.1246/bcsj.36.1143

Versleijen, J. P. G., van Leusen, A. M., & Feringa, B. L. (1999). Copper(I) phosphoramidite catalyzed asymmetric conjugate addition of dialkylzinc reagents of α,β-unsaturated nitroacetates; an enantioselective route to β-aryl-nitroalkanes. Tetrahedron Letters, 40(31), 5803-5806. doi:10.1016/s0040-4039(99)01118-1

Fioravanti, S., Pellacani, L., & Vergari, M. C. (2012). Domino reactions for the synthesis of various α-substituted nitro alkenes. Org. Biomol. Chem., 10(3), 524-528. doi:10.1039/c1ob06260c

Fogg, D. E., & dos Santos, E. N. (2004). Tandem catalysis: a taxonomy and illustrative review. Coordination Chemistry Reviews, 248(21-24), 2365-2379. doi:10.1016/j.ccr.2004.05.012

(s. f.). doi:10.1021/jo026068

Balme, G., Bossharth, E., & Monteiro, N. (2003). Pd-Assisted Multicomponent Synthesis of Heterocycles. European Journal of Organic Chemistry, 2003(21), 4101-4111. doi:10.1002/ejoc.200300378

Malacria, M. (1996). Selective Preparation of Complex Polycyclic Molecules from Acyclic Precursors via Radical Mediated- or Transition Metal-Catalyzed Cascade Reactions. Chemical Reviews, 96(1), 289-306. doi:10.1021/cr9500186

(s. f.). doi:10.1021/cr950023

Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e

Lee, J. M., Na, Y., Han, H., & Chang, S. (2004). Cooperative multi-catalyst systems for one-pot organic transformations. Chemical Society Reviews, 33(5), 302. doi:10.1039/b309033g

Wasilke, J.-C., Obrey, S. J., Baker, R. T., & Bazan, G. C. (2005). Concurrent Tandem Catalysis. Chemical Reviews, 105(3), 1001-1020. doi:10.1021/cr020018n

Ugi, I. (1997). Multikomponentenreaktionen (MCR). I. Perspektiven von Multikomponentenreaktionen und deren Bibliotheken. Journal für Praktische Chemie/Chemiker-Zeitung, 339(1), 499-516. doi:10.1002/prac.19973390193

José Climent, M., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2(1), 16-58. doi:10.1039/c1ra00807b

Battistuzzi, G., Cacchi, S., & Fabrizi, G. (2002). The Aminopalladation/Reductive Elimination Domino Reaction in the Construction of Functionalized Indole Rings. European Journal of Organic Chemistry, 2002(16), 2671. doi:10.1002/1099-0690(200208)2002:16<2671::aid-ejoc2671>3.0.co;2-x

Negishi, E., Copéret, C., Ma, S., Liou, S.-Y., & Liu, F. (1996). Cyclic Carbopalladation. A Versatile Synthetic Methodology for the Construction of Cyclic Organic Compounds. Chemical Reviews, 96(1), 365-394. doi:10.1021/cr950020x

Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g

Iosif, F., Coman, S., Pârvulescu, V., Grange, P., Delsarte, S., Vos, D. D., & Jacobs, P. (2004). Ir-Beta zeolite as a heterogeneous catalyst for the one-pot transformation of citronellal to menthol. Chem. Commun., (11), 1292-1293. doi:10.1039/b403692a

Neaţu, F., Coman, S., Pârvulescu, V. I., Poncelet, G., De Vos, D., & Jacobs, P. (2009). Heterogeneous Catalytic Transformation of Citronellal to Menthol in a Single Step on Ir-Beta Zeolite Catalysts. Topics in Catalysis, 52(9), 1292-1300. doi:10.1007/s11244-009-9270-9

MERTENS, P., VERPOORT, F., PARVULESCU, A., & DEVOS, D. (2006). Pt/H-beta zeolites as productive bifunctional catalysts for the one-step citronellal-to-menthol conversion. Journal of Catalysis, 243(1), 7-13. doi:10.1016/j.jcat.2006.06.017

Phan, N. T. S., Gill, C. S., Nguyen, J. V., Zhang, Z. J., & Jones, C. W. (2006). Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst. Angewandte Chemie, 118(14), 2267-2270. doi:10.1002/ange.200503445

Phan, N. T. S., Gill, C. S., Nguyen, J. V., Zhang, Z. J., & Jones, C. W. (2006). Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst. Angewandte Chemie International Edition, 45(14), 2209-2212. doi:10.1002/anie.200503445

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem