dc.contributor.author |
García Meca, Carlos
|
es_ES |
dc.contributor.author |
Hurtado Montañés, Juan
|
es_ES |
dc.contributor.author |
Martí Sendra, Javier
|
es_ES |
dc.contributor.author |
Martínez Abietar, Alejandro José
|
es_ES |
dc.contributor.author |
Dickson, Wayne
|
es_ES |
dc.contributor.author |
Zayats, Anatoly V.
|
es_ES |
dc.date.accessioned |
2015-11-23T08:21:20Z |
|
dc.date.available |
2015-11-23T08:21:20Z |
|
dc.date.issued |
2011-02-11 |
|
dc.identifier.issn |
0031-9007 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/57868 |
|
dc.description.abstract |
We experimentally demonstrate a low-loss multilayered metamaterial exhibiting a double-negative refractive index in the visible spectral range. To this end, we exploit a second-order magnetic resonance of the so-called fishnet structure. The low-loss nature of the employed magnetic resonance, together with the effect of the interacting adjacent layers, results in a figure of merit as high as 3.34. A wide spectral range of negative index is achieved, covering the wavelength region between 620 and 806 nm with only two different designs. © 2011 American Physical Society. |
es_ES |
dc.description.sponsorship |
Financial support by the Spanish MICINN (Contracts No. CSD2008-00066 and No. TEC2008-06871-C02) and by the Valencian government (Contract No. PROMETEO-2010-087) is acknowledged. C.G.-M. acknowledges financial support from Grant FPU of MICINN. W.D. and A.Z. acknowledge financial support from EPSRC (U.K.). |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
American Physical Society |
es_ES |
dc.relation.ispartof |
Physical Review Letters |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Adjacent layers |
es_ES |
dc.subject |
Figure of merit |
es_ES |
dc.subject |
Fishnet structure |
es_ES |
dc.subject |
Low loss |
es_ES |
dc.subject |
Multi-layered |
es_ES |
dc.subject |
Negative index |
es_ES |
dc.subject |
Negative index of refraction |
es_ES |
dc.subject |
Negative refractive index |
es_ES |
dc.subject |
Second orders |
es_ES |
dc.subject |
Visible spectral range |
es_ES |
dc.subject |
Visible wavelengths |
es_ES |
dc.subject |
Wavelength regions |
es_ES |
dc.subject |
Wide spectral range |
es_ES |
dc.subject |
Magnetic resonance |
es_ES |
dc.subject |
Metamaterials |
es_ES |
dc.subject |
Refractive index |
es_ES |
dc.subject.classification |
TEORIA DE LA SEÑAL Y COMUNICACIONES |
es_ES |
dc.title |
Low-Loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1103/PhysRevLett.106.067402 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//TEC2008-06871-C02-02/ES/METAMATERIALES PARA APLICACIONES EN EL REGIMEN DE TERAHERCIOS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F087/ES/DESARROLLO DE NUEVOS DISPOSITIVOS NANOFOTONICOS BASADOS EN GUIAS DE SILICIO Y METAMATERIALES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions |
es_ES |
dc.description.bibliographicCitation |
García Meca, C.; Hurtado Montañés, J.; Martí Sendra, J.; Martínez Abietar, AJ.; Dickson, W.; Zayats, AV. (2011). Low-Loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths. Physical Review Letters. 106(6). https://doi.org/10.1103/PhysRevLett.106.067402 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1103/PhysRevLett.106.067402 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
106 |
es_ES |
dc.description.issue |
6 |
es_ES |
dc.relation.senia |
209156 |
es_ES |
dc.identifier.eissn |
1079-7114 |
|
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
Engineering and Physical Sciences Research Council, Reino Unido |
es_ES |
dc.description.references |
Veselago, V. G. (1968). THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ. Soviet Physics Uspekhi, 10(4), 509-514. doi:10.1070/pu1968v010n04abeh003699 |
es_ES |
dc.description.references |
Shelby, R. A. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77-79. doi:10.1126/science.1058847 |
es_ES |
dc.description.references |
Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 |
es_ES |
dc.description.references |
Tsakmakidis, K. L., Boardman, A. D., & Hess, O. (2007). ‘Trapped rainbow’ storage of light in metamaterials. Nature, 450(7168), 397-401. doi:10.1038/nature06285 |
es_ES |
dc.description.references |
Soukoulis, C. M., Linden, S., & Wegener, M. (2007). PHYSICS: Negative Refractive Index at Optical Wavelengths. Science, 315(5808), 47-49. doi:10.1126/science.1136481 |
es_ES |
dc.description.references |
Depine, R. A., & Lakhtakia, A. (2004). A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity. Microwave and Optical Technology Letters, 41(4), 315-316. doi:10.1002/mop.20127 |
es_ES |
dc.description.references |
Dolling, G., Wegener, M., Soukoulis, C. M., & Linden, S. (2006). Negative-index metamaterial at 780 nm wavelength. Optics Letters, 32(1), 53. doi:10.1364/ol.32.000053 |
es_ES |
dc.description.references |
Chettiar, U. K., Kildishev, A. V., Yuan, H.-K., Cai, W., Xiao, S., Drachev, V. P., & Shalaev, V. M. (2007). Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Optics Letters, 32(12), 1671. doi:10.1364/ol.32.001671 |
es_ES |
dc.description.references |
Xiao, S., Chettiar, U. K., Kildishev, A. V., Drachev, V. P., & Shalaev, V. M. (2009). Yellow-light negative-index metamaterials. Optics Letters, 34(22), 3478. doi:10.1364/ol.34.003478 |
es_ES |
dc.description.references |
Mary, A., Rodrigo, S. G., Garcia-Vidal, F. J., & Martin-Moreno, L. (2008). Theory of Negative-Refractive-Index Response of Double-Fishnet Structures. Physical Review Letters, 101(10). doi:10.1103/physrevlett.101.103902 |
es_ES |
dc.description.references |
García-Meca, C., Ortuño, R., Rodríguez-Fortuño, F. J., Martí, J., & Martínez, A. (2009). Negative refractive index metamaterials aided by extraordinary optical transmission. Optics Express, 17(8), 6026. doi:10.1364/oe.17.006026 |
es_ES |
dc.description.references |
Ortuño, R., García-Meca, C., Rodríguez-Fortuño, F. J., Martí, J., & Martínez, A. (2009). Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays. Physical Review B, 79(7). doi:10.1103/physrevb.79.075425 |
es_ES |
dc.description.references |
Zayats, A. V., Smolyaninov, I. I., & Maradudin, A. A. (2005). Nano-optics of surface plasmon polaritons. Physics Reports, 408(3-4), 131-314. doi:10.1016/j.physrep.2004.11.001 |
es_ES |
dc.description.references |
Dickson, W., Wurtz, G. A., Evans, P. R., Pollard, R. J., & Zayats, A. V. (2008). Electronically Controlled Surface Plasmon Dispersion and Optical Transmission through Metallic Hole Arrays Using Liquid Crystal. Nano Letters, 8(1), 281-286. doi:10.1021/nl072613g |
es_ES |
dc.description.references |
Minovich, A., Neshev, D. N., Powell, D. A., Shadrivov, I. V., Lapine, M., McKerracher, I., … Kivshar, Y. S. (2010). Tilted response of fishnet metamaterials at near-infrared optical wavelengths. Physical Review B, 81(11). doi:10.1103/physrevb.81.115109 |
es_ES |
dc.description.references |
García-Meca, C., Ortuño, R., Rodríguez-Fortuño, F. J., Martí, J., & Martínez, A. (2009). Double-negative polarization-independent fishnet metamaterial in the visible spectrum. Optics Letters, 34(10), 1603. doi:10.1364/ol.34.001603 |
es_ES |
dc.description.references |
Zhou, J., Koschny, T., & Soukoulis, C. M. (2008). An efficient way to reduce losses of left-handed metamaterials. Optics Express, 16(15), 11147. doi:10.1364/oe.16.011147 |
es_ES |
dc.description.references |
Zhang, S., Fan, W., Panoiu, N. C., Malloy, K. J., Osgood, R. M., & Brueck, S. R. (2006). Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Optics Express, 14(15), 6778. doi:10.1364/oe.14.006778 |
es_ES |
dc.description.references |
Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G., & Zhang, X. (2008). Three-dimensional optical metamaterial with a negative refractive index. Nature, 455(7211), 376-379. doi:10.1038/nature07247 |
es_ES |
dc.description.references |
Drachev, V. P., Chettiar, U. K., Kildishev, A. V., Yuan, H.-K., Cai, W., & Shalaev, V. M. (2008). The Ag dielectric function in plasmonic metamaterials. Optics Express, 16(2), 1186. doi:10.1364/oe.16.001186 |
es_ES |
dc.description.references |
Kriegler, C. E., Rill, M. S., Linden, S., & Wegener, M. (2010). Bianisotropic Photonic Metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, 16(2), 367-375. doi:10.1109/jstqe.2009.2020809 |
es_ES |
dc.description.references |
Rockstuhl, C., Paul, T., Lederer, F., Pertsch, T., Zentgraf, T., Meyrath, T. P., & Giessen, H. (2008). Transition from thin-film to bulk properties of metamaterials. Physical Review B, 77(3). doi:10.1103/physrevb.77.035126 |
es_ES |
dc.description.references |
Xiao, S., Drachev, V. P., Kildishev, A. V., Ni, X., Chettiar, U. K., Yuan, H.-K., & Shalaev, V. M. (2010). Loss-free and active optical negative-index metamaterials. Nature, 466(7307), 735-738. doi:10.1038/nature09278 |
es_ES |