- -

Effect of Rehydration Temperature on Functional Properties, Antioxidant Capacity and Structural Characteristics of Apple (Granny Smith) Slices in Relation to Mass Transfer Kinetics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Rehydration Temperature on Functional Properties, Antioxidant Capacity and Structural Characteristics of Apple (Granny Smith) Slices in Relation to Mass Transfer Kinetics

Mostrar el registro completo del ítem

Zura-Bravo, L.; Ah-Hen, K.; Vega-Galvez, A.; García Segovia, P.; Lemus-Mondaca, R. (2013). Effect of Rehydration Temperature on Functional Properties, Antioxidant Capacity and Structural Characteristics of Apple (Granny Smith) Slices in Relation to Mass Transfer Kinetics. Journal of Food Process Engineering. 36(5):559-571. doi:10.1111/jfpe.12018

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57968

Ficheros en el ítem

Metadatos del ítem

Título: Effect of Rehydration Temperature on Functional Properties, Antioxidant Capacity and Structural Characteristics of Apple (Granny Smith) Slices in Relation to Mass Transfer Kinetics
Autor: Zura-Bravo, L. Ah-Hen, K. Vega-Galvez, A. García Segovia, Purificación Lemus-Mondaca, R.
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
Apple slices dried at 60C were rehydrated at 20, 40 and 60C to analyze the influence of processing temperature on quality attributes and rehydration kinetics. Diffusion coefficient increased with process temperature from ...[+]
Palabras clave: Antioxidant, apple slices, rehydration kinetics, microstructure
Derechos de uso: Cerrado
Fuente:
Journal of Food Process Engineering. (issn: 0145-8876 )
DOI: 10.1111/jfpe.12018
Editorial:
Wiley: 12 months
Wiley-Blackwell
Versión del editor: http://dx.doi.org/10.1111/jfpe.12018
Agradecimientos:
The authors gratefully acknowledge financial support of the Research Department of Universidad de la Serena for the publication of this research.
Tipo: Artículo

References

Abbott, J. A., Saftner, R. A., Gross, K. C., Vinyard, B. T., & Janick, J. (2004). Consumer evaluation and quality measurement of fresh-cut slices of ‘Fuji,’ ‘Golden Delicious,’ ‘GoldRush,’ and ‘Granny Smith’ apples. Postharvest Biology and Technology, 33(2), 127-140. doi:10.1016/j.postharvbio.2003.12.008

Aguilera, J. M., Chiralt, A., & Fito, P. (2003). Food dehydration and product structure. Trends in Food Science & Technology, 14(10), 432-437. doi:10.1016/s0924-2244(03)00122-5

Aprikian, O., Levrat-Verny, M.-A., Besson, C., Busserolles, J., Rémésy, C., & Demigné, C. (2001). Apple favourably affects parameters of cholesterol metabolism and of anti-oxidative protection in cholesterol-fed rats. Food Chemistry, 75(4), 445-452. doi:10.1016/s0308-8146(01)00235-7 [+]
Abbott, J. A., Saftner, R. A., Gross, K. C., Vinyard, B. T., & Janick, J. (2004). Consumer evaluation and quality measurement of fresh-cut slices of ‘Fuji,’ ‘Golden Delicious,’ ‘GoldRush,’ and ‘Granny Smith’ apples. Postharvest Biology and Technology, 33(2), 127-140. doi:10.1016/j.postharvbio.2003.12.008

Aguilera, J. M., Chiralt, A., & Fito, P. (2003). Food dehydration and product structure. Trends in Food Science & Technology, 14(10), 432-437. doi:10.1016/s0924-2244(03)00122-5

Aprikian, O., Levrat-Verny, M.-A., Besson, C., Busserolles, J., Rémésy, C., & Demigné, C. (2001). Apple favourably affects parameters of cholesterol metabolism and of anti-oxidative protection in cholesterol-fed rats. Food Chemistry, 75(4), 445-452. doi:10.1016/s0308-8146(01)00235-7

Bilbao-Sáinz, C., Andrés, A., & Fito, P. (2005). Hydration kinetics of dried apple as affected by drying conditions. Journal of Food Engineering, 68(3), 369-376. doi:10.1016/j.jfoodeng.2004.06.012

Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal, 3(1). doi:10.1186/1475-2891-3-5

Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., & Yong, M. Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172. doi:10.1016/j.foodchem.2008.07.090

Chuah, A. M., Lee, Y.-C., Yamaguchi, T., Takamura, H., Yin, L.-J., & Matoba, T. (2008). Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry, 111(1), 20-28. doi:10.1016/j.foodchem.2008.03.022

Cunningham, S. E., McMinn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2007). Modelling water absorption of pasta during soaking. Journal of Food Engineering, 82(4), 600-607. doi:10.1016/j.jfoodeng.2007.03.018

Cunningham, S. E., Mcminn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2008). Experimental study of rehydration kinetics of potato cylinders. Food and Bioproducts Processing, 86(1), 15-24. doi:10.1016/j.fbp.2007.10.008

Garau, M. C., Simal, S., Rosselló, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014-1024. doi:10.1016/j.foodchem.2007.01.009

García-Pascual, P., Sanjuán, N., Melis, R., & Mulet, A. (2006). Morchella esculenta (morel) rehydration process modelling. Journal of Food Engineering, 72(4), 346-353. doi:10.1016/j.jfoodeng.2004.12.014

Gerschenson, L. N., Rojas, A. M., & Marangoni, A. G. (2001). Effects of processing on kiwi fruit dynamic rheological behaviour and tissue structure. Food Research International, 34(1), 1-6. doi:10.1016/s0963-9969(00)00121-6

Kaptso, K. G., Njintang, Y. N., Komnek, A. E., Hounhouigan, J., Scher, J., & Mbofung, C. M. F. (2008). Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bambara groundnuts (Voandzeia subterranea) seeds. Journal of Food Engineering, 86(1), 91-99. doi:10.1016/j.jfoodeng.2007.09.014

Kasapis, S. (2005). Glass Transition Phenomena in Dehydrated Model Systems and Foods: A Review. Drying Technology, 23(4), 731-757. doi:10.1081/drt-200054182

Kaymak-Ertekin, F. (2002). Drying and Rehydrating Kinetics of Green and Red Peppers. Journal of Food Science, 67(1), 168-175. doi:10.1111/j.1365-2621.2002.tb11378.x

Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M. T., & Vasantha Rupasinghe, H. P. (2008). Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 21(5), 396-401. doi:10.1016/j.jfca.2008.03.004

Krokida, M. ., & Marinos-Kouris, D. (2003). Rehydration kinetics of dehydrated products. Journal of Food Engineering, 57(1), 1-7. doi:10.1016/s0260-8774(02)00214-5

Krokida, M. K., & Philippopoulos, C. (2005). Rehydration of Dehydrated Foods. Drying Technology, 23(4), 799-830. doi:10.1081/drt-200054201

Lee, K. W., Kim, Y. J., Kim, D.-O., Lee, H. J., & Lee, C. Y. (2003). Major Phenolics in Apple and Their Contribution to the Total Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 51(22), 6516-6520. doi:10.1021/jf034475w

Lemus-Mondaca, R., Miranda, M., Grau, A. A., Briones, V., Villalobos, R., & Vega-Gálvez, A. (2009). Effect of Osmotic Pretreatment on Hot Air Drying Kinetics and Quality of Chilean Papaya (Carica pubescens). Drying Technology, 27(10), 1105-1115. doi:10.1080/07373930903221291

Maldonado, S., Arnau, E., & Bertuzzi, M. A. (2010). Effect of temperature and pretreatment on water diffusion during rehydration of dehydrated mangoes. Journal of Food Engineering, 96(3), 333-341. doi:10.1016/j.jfoodeng.2009.08.017

Marabi, A., Livings, S., Jacobson, M., & Saguy, I. S. (2003). Normalized Weibull distribution for modeling rehydration of food particulates. European Food Research and Technology, 217(4), 311-318. doi:10.1007/s00217-003-0719-y

Maskan, M. (2002). Effect of processing on hydration kinetics of three wheat products of the same variety. Journal of Food Engineering, 52(4), 337-341. doi:10.1016/s0260-8774(01)00124-8

MEDA, L., & RATTI, C. (2005). REHYDRATION OF FREEZE-DRIED STRAWBERRIES AT VARYING TEMPERATURES. Journal of Food Process Engineering, 28(3), 233-246. doi:10.1111/j.1745-4530.2005.00404.x

Miranda, M., Maureira, H., Rodríguez, K., & Vega-Gálvez, A. (2009). Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of Aloe Vera (Aloe Barbadensis Miller) gel. Journal of Food Engineering, 91(2), 297-304. doi:10.1016/j.jfoodeng.2008.09.007

Moreira, R., Chenlo, F., Chaguri, L., & Fernandes, C. (2008). Water absorption, texture, and color kinetics of air-dried chestnuts during rehydration. Journal of Food Engineering, 86(4), 584-594. doi:10.1016/j.jfoodeng.2007.11.012

Pearson, D. A., Tan, C. H., German, J. B., Davis, P. A., & Gershwin, M. E. (1999). Apple juice inhibits human low density lipoprotein oxidation. Life Sciences, 64(21), 1913-1920. doi:10.1016/s0024-3205(99)00137-x

Que, F., Mao, L., Fang, X., & Wu, T. (2008). Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. International Journal of Food Science & Technology, 43(7), 1195-1201. doi:10.1111/j.1365-2621.2007.01590.x

Resio, A. C., Aguerre, R. J., & Suarez, C. (2006). Hydration kinetics of amaranth grain. Journal of Food Engineering, 72(3), 247-253. doi:10.1016/j.jfoodeng.2004.12.003

Sanjuán, N., Simal, S., Bon, J., & Mulet, A. (1999). Modelling of broccoli stems rehydration process. Journal of Food Engineering, 42(1), 27-31. doi:10.1016/s0260-8774(99)00099-0

Sanjuán, N., Cárcel, J. A., Clemente, G., & Mulet, A. (2001). Modelling of the rehydration process of brocolli florets. European Food Research and Technology, 212(4), 449-453. doi:10.1007/s002170000277

SOLOMON, W. K. (2007). HYDRATION KINETICS OF LUPIN (LUPINUS ALBUS) SEEDS. Journal of Food Process Engineering, 30(1), 119-130. doi:10.1111/j.1745-4530.2007.00098.x

Taiwo, K. A., Angersbach, A., & Knorr, D. (2002). Rehydration Studies on Pretreated and Osmotically Dehydrated Apple Slices. Journal of Food Science, 67(2), 842-847. doi:10.1111/j.1365-2621.2002.tb10687.x

TURKMEN, N., SARI, F., & VELIOGLU, Y. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93(4), 713-718. doi:10.1016/j.foodchem.2004.12.038

Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653. doi:10.1016/j.foodchem.2009.04.066

Velić, D., Planinić, M., Tomas, S., & Bilić, M. (2004). Influence of airflow velocity on kinetics of convection apple drying. Journal of Food Engineering, 64(1), 97-102. doi:10.1016/j.jfoodeng.2003.09.016

Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol Antioxidant Quantity and Quality in Foods:  Fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315-5321. doi:10.1021/jf0009293

Weerts, A. H., Martin, D. R., Lian, G., & Melrose, J. R. (2005). Modelling the hydration of foodstuffs. Simulation Modelling Practice and Theory, 13(2), 119-128. doi:10.1016/j.simpat.2004.09.001

Yoshizawa, Y., Sakurai, K., Kawaii, S., Asari, M., Soejima, J., & Murofushi, N. (2005). Comparison of Antiproliferative and Antioxidant Properties among Nineteen Apple Cultivars. HortScience, 40(5), 1204-1207. doi:10.21273/hortsci.40.5.1204

Zhang, M., & Chen, D. (2006). Effects of low temperature soaking on color and texture of green eggplants. Journal of Food Engineering, 74(1), 54-59. doi:10.1016/j.jfoodeng.2005.02.015

Zura, L., Uribe, E., Lemus-Mondaca, R., Saavedra-Torrico, J., Vega-Gálvez, A., & Di Scala, K. (2011). Rehydration Capacity of Chilean Papaya (Vasconcellea pubescens): Effect of Process Temperature on Kinetic Parameters and Functional Properties. Food and Bioprocess Technology, 6(3), 844-850. doi:10.1007/s11947-011-0677-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem