Mostrar el registro sencillo del ítem
dc.contributor.author | Mateo, Fernando | es_ES |
dc.contributor.author | Gadea Gironés, Rafael | es_ES |
dc.contributor.author | Mateo, Eva M. | es_ES |
dc.contributor.author | Jimenez, Misericordia | es_ES |
dc.date.accessioned | 2015-11-24T11:31:01Z | |
dc.date.available | 2015-11-24T11:31:01Z | |
dc.date.issued | 2011-01 | |
dc.identifier.issn | 0956-7135 | |
dc.identifier.uri | http://hdl.handle.net/10251/57989 | |
dc.description.abstract | The capacity of multi-layer perceptron artificial neural networks (MLP-ANN) and radial-basis function networks (RBFNs) to predict deoxynivalenol (DON) accumulation in barley seeds contaminated with Fusarium culmorum under different conditions has been assessed. Temperature (20-28 °C), water activity (0.94-0.98), inoculum size (7-15 mm diameter), and time were the inputs while DON concentration was the output. The dataset was used to train, validate and test many ANNs. Minimizing the mean-square error (MSE) was used to choose the optimal network. Single-layer perceptrons with low number of hidden nodes proved better than double-layer perceptrons, but the performance depended on the training algorithm. The RBFN reached lower errors and better generalization than MLP-ANN but they required a high number of hidden nodes. Accurate prediction of DON accumulation in barley seeds by F. culmorum was possible using MLP-ANNs or RBFNs. © 2010 Elsevier Ltd. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish "Ministerio de Educacion y Ciencia" (projects AGL-2004-07549-C05-02, AGL2007-66416-C05-01/ALI, and a research grant) and the Valencian Government (Conselleria de Empresa, Universitat i Ciencia) (project GV04B-111, action ACOMP/2007/155, and a research grant). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Food Control | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fusarium culmorum | es_ES |
dc.subject | Hordeum | es_ES |
dc.subject | Microbial growth | es_ES |
dc.subject | Leuconostoc-mesenteroides | es_ES |
dc.subject | Predictive microbiology | es_ES |
dc.subject | B Trichothecenes | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contaminated with Fusarium culmorum | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.foodcont.2010.05.013 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AGL2004-07549-C05-02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AGL2007-66416-C05-01/ES/PRESENCIA SIMULTANEA DE MICOTOXINAS EN ALIMENTOS. EVALUACION DEL PELIGRO POTENCIAL Y REAL/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.description.bibliographicCitation | Mateo, F.; Gadea Gironés, R.; Mateo, EM.; Jimenez, M. (2011). Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contaminated with Fusarium culmorum. Food Control. 22(1):88-95. https://doi.org/10.1016/j.foodcont.2010.05.013 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.foodcont.2010.05.013 | es_ES |
dc.description.upvformatpinicio | 88 | es_ES |
dc.description.upvformatpfin | 95 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 220199 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |