- -

Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contaminated with Fusarium culmorum

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contaminated with Fusarium culmorum

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mateo, Fernando es_ES
dc.contributor.author Gadea Gironés, Rafael es_ES
dc.contributor.author Mateo, Eva M. es_ES
dc.contributor.author Jimenez, Misericordia es_ES
dc.date.accessioned 2015-11-24T11:31:01Z
dc.date.available 2015-11-24T11:31:01Z
dc.date.issued 2011-01
dc.identifier.issn 0956-7135
dc.identifier.uri http://hdl.handle.net/10251/57989
dc.description.abstract The capacity of multi-layer perceptron artificial neural networks (MLP-ANN) and radial-basis function networks (RBFNs) to predict deoxynivalenol (DON) accumulation in barley seeds contaminated with Fusarium culmorum under different conditions has been assessed. Temperature (20-28 °C), water activity (0.94-0.98), inoculum size (7-15 mm diameter), and time were the inputs while DON concentration was the output. The dataset was used to train, validate and test many ANNs. Minimizing the mean-square error (MSE) was used to choose the optimal network. Single-layer perceptrons with low number of hidden nodes proved better than double-layer perceptrons, but the performance depended on the training algorithm. The RBFN reached lower errors and better generalization than MLP-ANN but they required a high number of hidden nodes. Accurate prediction of DON accumulation in barley seeds by F. culmorum was possible using MLP-ANNs or RBFNs. © 2010 Elsevier Ltd. es_ES
dc.description.sponsorship This work was supported by the Spanish "Ministerio de Educacion y Ciencia" (projects AGL-2004-07549-C05-02, AGL2007-66416-C05-01/ALI, and a research grant) and the Valencian Government (Conselleria de Empresa, Universitat i Ciencia) (project GV04B-111, action ACOMP/2007/155, and a research grant). en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Food Control es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fusarium culmorum es_ES
dc.subject Hordeum es_ES
dc.subject Microbial growth es_ES
dc.subject Leuconostoc-mesenteroides es_ES
dc.subject Predictive microbiology es_ES
dc.subject B Trichothecenes es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contaminated with Fusarium culmorum es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.foodcont.2010.05.013
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AGL2004-07549-C05-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AGL2007-66416-C05-01/ES/PRESENCIA SIMULTANEA DE MICOTOXINAS EN ALIMENTOS. EVALUACION DEL PELIGRO POTENCIAL Y REAL/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Mateo, F.; Gadea Gironés, R.; Mateo, EM.; Jimenez, M. (2011). Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contaminated with Fusarium culmorum. Food Control. 22(1):88-95. https://doi.org/10.1016/j.foodcont.2010.05.013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.foodcont.2010.05.013 es_ES
dc.description.upvformatpinicio 88 es_ES
dc.description.upvformatpfin 95 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 220199 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem