Mostrar el registro sencillo del ítem
dc.contributor.author | Marín Molina, Josefa | es_ES |
dc.contributor.author | Romaguera Bonilla, Salvador | es_ES |
dc.contributor.author | Tirado Peláez, Pedro | es_ES |
dc.date.accessioned | 2015-11-25T16:24:41Z | |
dc.date.available | 2015-11-25T16:24:41Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0972-6802 | |
dc.identifier.uri | http://hdl.handle.net/10251/58108 | |
dc.description | Copyright © 2013 J. Marín et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | es_ES |
dc.description.abstract | By using a suitable modification of the notion of a -distance we obtain some fixed point results for generalized contractive set-valued maps on complete preordered quasi-metric spaces. We also show that several distinguished examples of non-metrizable quasi-metric spaces and of cones of asymmetric normed spaces admit -distances of this type. Our results extend and generalize some well-known fixed point theorems. | es_ES |
dc.description.sponsorship | The authors thank the referees for some useful suggestions and corrections. This research is supported by the Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01. S. Romaguera and P. Tirado also acknowledge the support of Universitat Politecnica de Valencia, Grant PAID-06-12. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Journal of Function Spaces and Applications | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | MULTIVALUED MAPPINGS | es_ES |
dc.subject | UNIFORM STRUCTURES | es_ES |
dc.subject | FIXED-POINTS | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Generalized contractive set-valued maps on complete preordered quasi-metric spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/269246 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2012-37894-C02-01/ES/METODOS TOPOLOGICOS EN HIPERESPACIOS Y MULTIFUNCIONES CONTRACTIVAS. CASI-METRICAS Y DOMINIOS CUANTITATIVOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-12/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Marín Molina, J.; Romaguera Bonilla, S.; Tirado Peláez, P. (2013). Generalized contractive set-valued maps on complete preordered quasi-metric spaces. Journal of Function Spaces and Applications. 2013:1-6. https://doi.org/10.1155/2013/269246 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2013/269246 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.relation.senia | 242278 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Ekeland, I. (1979). Nonconvex minimization problems. Bulletin of the American Mathematical Society, 1(3), 443-475. doi:10.1090/s0273-0979-1979-14595-6 | es_ES |
dc.description.references | Park, S. (2000). On generalizations of the Ekeland-type variational principles. Nonlinear Analysis: Theory, Methods & Applications, 39(7), 881-889. doi:10.1016/s0362-546x(98)00253-3 | es_ES |
dc.description.references | Al-Homidan, S., Ansari, Q. H., & Yao, J.-C. (2008). Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Analysis: Theory, Methods & Applications, 69(1), 126-139. doi:10.1016/j.na.2007.05.004 | es_ES |
dc.description.references | Marín, J., Romaguera, S., & Tirado, P. (2011). Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications, 2011(1), 2. doi:10.1186/1687-1812-2011-2 | es_ES |
dc.description.references | Caristi, J., & Kirk, W. A. (1975). Geometric fixed point theory and inwardness conditions. The Geometry of Metric and Linear Spaces, 74-83. doi:10.1007/bfb0081133 | es_ES |
dc.description.references | Nadler, S. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488. doi:10.2140/pjm.1969.30.475 | es_ES |
dc.description.references | Alegre, C., Romaguera, S., & Veeramani, P. (2012). The Uniform Boundedness Theorem in Asymmetric Normed Spaces. Abstract and Applied Analysis, 2012, 1-8. doi:10.1155/2012/809626 | es_ES |
dc.description.references | Alegre, C., Ferrer, J., & Gregori, V. (1999). Acta Mathematica Hungarica, 82(4), 325-330. doi:10.1023/a:1006692309917 | es_ES |
dc.description.references | Ferrer, J., Gregori, V., & Alegre, C. (1993). Quasi-uniform Structures in Linear Lattices. Rocky Mountain Journal of Mathematics, 23(3), 877-884. doi:10.1216/rmjm/1181072529 | es_ES |
dc.description.references | Mizoguchi, N., & Takahashi, W. (1989). Fixed point theorems for multivalued mappings on complete metric spaces. Journal of Mathematical Analysis and Applications, 141(1), 177-188. doi:10.1016/0022-247x(89)90214-x | es_ES |
dc.description.references | Daffer, P. Z., & Kaneko, H. (1995). Fixed Points of Generalized Contractive Multi-valued Mappings. Journal of Mathematical Analysis and Applications, 192(2), 655-666. doi:10.1006/jmaa.1995.1194 | es_ES |
dc.description.references | Yu-Qing, C. (1996). Proceedings of the American Mathematical Society, 124(10), 3085-3089. doi:10.1090/s0002-9939-96-03428-4 | es_ES |
dc.description.references | Rakotch, E. (1962). A note on contractive mappings. Proceedings of the American Mathematical Society, 13(3), 459-459. doi:10.1090/s0002-9939-1962-0148046-1 | es_ES |
dc.description.references | Berthiaume, G. (1977). On quasi-uniformities in hyperspaces. Proceedings of the American Mathematical Society, 66(2), 335-335. doi:10.1090/s0002-9939-1977-0482620-9 | es_ES |
dc.description.references | Rodríguez-López, J., & Romaguera, S. (2003). Set-Valued Analysis, 11(4), 323-344. doi:10.1023/a:1025675400451 | es_ES |
dc.description.references | Doitchinov, D. (1988). On completeness in quasi-metric spaces. Topology and its Applications, 30(2), 127-148. doi:10.1016/0166-8641(88)90012-0 | es_ES |
dc.description.references | García-Raffi, L. M., Romaguera, S., & Sánchez-Pérez, E. A. (2002). Sequence spaces and asymmetric norms in the theory of computational complexity. Mathematical and Computer Modelling, 36(1-2), 1-11. doi:10.1016/s0895-7177(02)00100-0 | es_ES |