- -

Generalized contractive set-valued maps on complete preordered quasi-metric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generalized contractive set-valued maps on complete preordered quasi-metric spaces

Mostrar el registro completo del ítem

Marín Molina, J.; Romaguera Bonilla, S.; Tirado Peláez, P. (2013). Generalized contractive set-valued maps on complete preordered quasi-metric spaces. Journal of Function Spaces and Applications. 2013:1-6. https://doi.org/10.1155/2013/269246

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58108

Ficheros en el ítem

Metadatos del ítem

Título: Generalized contractive set-valued maps on complete preordered quasi-metric spaces
Autor: Marín Molina, Josefa Romaguera Bonilla, Salvador Tirado Peláez, Pedro
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
By using a suitable modification of the notion of a -distance we obtain some fixed point results for generalized contractive set-valued maps on complete preordered quasi-metric spaces. We also show that several distinguished ...[+]
Palabras clave: MULTIVALUED MAPPINGS , UNIFORM STRUCTURES , FIXED-POINTS
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Function Spaces and Applications. (issn: 0972-6802 )
DOI: 10.1155/2013/269246
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2013/269246
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2012-37894-C02-01/ES/METODOS TOPOLOGICOS EN HIPERESPACIOS Y MULTIFUNCIONES CONTRACTIVAS. CASI-METRICAS Y DOMINIOS CUANTITATIVOS/
info:eu-repo/grantAgreement/UPV//PAID-06-12/
Descripción: Copyright © 2013 J. Marín et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Agradecimientos:
The authors thank the referees for some useful suggestions and corrections. This research is supported by the Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01. S. Romaguera and P. Tirado also ...[+]
Tipo: Artículo

References

Ekeland, I. (1979). Nonconvex minimization problems. Bulletin of the American Mathematical Society, 1(3), 443-475. doi:10.1090/s0273-0979-1979-14595-6

Park, S. (2000). On generalizations of the Ekeland-type variational principles. Nonlinear Analysis: Theory, Methods & Applications, 39(7), 881-889. doi:10.1016/s0362-546x(98)00253-3

Al-Homidan, S., Ansari, Q. H., & Yao, J.-C. (2008). Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Analysis: Theory, Methods & Applications, 69(1), 126-139. doi:10.1016/j.na.2007.05.004 [+]
Ekeland, I. (1979). Nonconvex minimization problems. Bulletin of the American Mathematical Society, 1(3), 443-475. doi:10.1090/s0273-0979-1979-14595-6

Park, S. (2000). On generalizations of the Ekeland-type variational principles. Nonlinear Analysis: Theory, Methods & Applications, 39(7), 881-889. doi:10.1016/s0362-546x(98)00253-3

Al-Homidan, S., Ansari, Q. H., & Yao, J.-C. (2008). Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Analysis: Theory, Methods & Applications, 69(1), 126-139. doi:10.1016/j.na.2007.05.004

Marín, J., Romaguera, S., & Tirado, P. (2011). Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications, 2011(1), 2. doi:10.1186/1687-1812-2011-2

Caristi, J., & Kirk, W. A. (1975). Geometric fixed point theory and inwardness conditions. The Geometry of Metric and Linear Spaces, 74-83. doi:10.1007/bfb0081133

Nadler, S. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488. doi:10.2140/pjm.1969.30.475

Alegre, C., Romaguera, S., & Veeramani, P. (2012). The Uniform Boundedness Theorem in Asymmetric Normed Spaces. Abstract and Applied Analysis, 2012, 1-8. doi:10.1155/2012/809626

Alegre, C., Ferrer, J., & Gregori, V. (1999). Acta Mathematica Hungarica, 82(4), 325-330. doi:10.1023/a:1006692309917

Ferrer, J., Gregori, V., & Alegre, C. (1993). Quasi-uniform Structures in Linear Lattices. Rocky Mountain Journal of Mathematics, 23(3), 877-884. doi:10.1216/rmjm/1181072529

Mizoguchi, N., & Takahashi, W. (1989). Fixed point theorems for multivalued mappings on complete metric spaces. Journal of Mathematical Analysis and Applications, 141(1), 177-188. doi:10.1016/0022-247x(89)90214-x

Daffer, P. Z., & Kaneko, H. (1995). Fixed Points of Generalized Contractive Multi-valued Mappings. Journal of Mathematical Analysis and Applications, 192(2), 655-666. doi:10.1006/jmaa.1995.1194

Yu-Qing, C. (1996). Proceedings of the American Mathematical Society, 124(10), 3085-3089. doi:10.1090/s0002-9939-96-03428-4

Rakotch, E. (1962). A note on contractive mappings. Proceedings of the American Mathematical Society, 13(3), 459-459. doi:10.1090/s0002-9939-1962-0148046-1

Berthiaume, G. (1977). On quasi-uniformities in hyperspaces. Proceedings of the American Mathematical Society, 66(2), 335-335. doi:10.1090/s0002-9939-1977-0482620-9

Rodríguez-López, J., & Romaguera, S. (2003). Set-Valued Analysis, 11(4), 323-344. doi:10.1023/a:1025675400451

Doitchinov, D. (1988). On completeness in quasi-metric spaces. Topology and its Applications, 30(2), 127-148. doi:10.1016/0166-8641(88)90012-0

García-Raffi, L. M., Romaguera, S., & Sánchez-Pérez, E. A. (2002). Sequence spaces and asymmetric norms in the theory of computational complexity. Mathematical and Computer Modelling, 36(1-2), 1-11. doi:10.1016/s0895-7177(02)00100-0

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem