Ekeland, I. (1979). Nonconvex minimization problems. Bulletin of the American Mathematical Society, 1(3), 443-475. doi:10.1090/s0273-0979-1979-14595-6
Park, S. (2000). On generalizations of the Ekeland-type variational principles. Nonlinear Analysis: Theory, Methods & Applications, 39(7), 881-889. doi:10.1016/s0362-546x(98)00253-3
Al-Homidan, S., Ansari, Q. H., & Yao, J.-C. (2008). Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Analysis: Theory, Methods & Applications, 69(1), 126-139. doi:10.1016/j.na.2007.05.004
[+]
Ekeland, I. (1979). Nonconvex minimization problems. Bulletin of the American Mathematical Society, 1(3), 443-475. doi:10.1090/s0273-0979-1979-14595-6
Park, S. (2000). On generalizations of the Ekeland-type variational principles. Nonlinear Analysis: Theory, Methods & Applications, 39(7), 881-889. doi:10.1016/s0362-546x(98)00253-3
Al-Homidan, S., Ansari, Q. H., & Yao, J.-C. (2008). Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Analysis: Theory, Methods & Applications, 69(1), 126-139. doi:10.1016/j.na.2007.05.004
Marín, J., Romaguera, S., & Tirado, P. (2011). Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications, 2011(1), 2. doi:10.1186/1687-1812-2011-2
Caristi, J., & Kirk, W. A. (1975). Geometric fixed point theory and inwardness conditions. The Geometry of Metric and Linear Spaces, 74-83. doi:10.1007/bfb0081133
Nadler, S. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488. doi:10.2140/pjm.1969.30.475
Alegre, C., Romaguera, S., & Veeramani, P. (2012). The Uniform Boundedness Theorem in Asymmetric Normed Spaces. Abstract and Applied Analysis, 2012, 1-8. doi:10.1155/2012/809626
Alegre, C., Ferrer, J., & Gregori, V. (1999). Acta Mathematica Hungarica, 82(4), 325-330. doi:10.1023/a:1006692309917
Ferrer, J., Gregori, V., & Alegre, C. (1993). Quasi-uniform Structures in Linear Lattices. Rocky Mountain Journal of Mathematics, 23(3), 877-884. doi:10.1216/rmjm/1181072529
Mizoguchi, N., & Takahashi, W. (1989). Fixed point theorems for multivalued mappings on complete metric spaces. Journal of Mathematical Analysis and Applications, 141(1), 177-188. doi:10.1016/0022-247x(89)90214-x
Daffer, P. Z., & Kaneko, H. (1995). Fixed Points of Generalized Contractive Multi-valued Mappings. Journal of Mathematical Analysis and Applications, 192(2), 655-666. doi:10.1006/jmaa.1995.1194
Yu-Qing, C. (1996). Proceedings of the American Mathematical Society, 124(10), 3085-3089. doi:10.1090/s0002-9939-96-03428-4
Rakotch, E. (1962). A note on contractive mappings. Proceedings of the American Mathematical Society, 13(3), 459-459. doi:10.1090/s0002-9939-1962-0148046-1
Berthiaume, G. (1977). On quasi-uniformities in hyperspaces. Proceedings of the American Mathematical Society, 66(2), 335-335. doi:10.1090/s0002-9939-1977-0482620-9
Rodríguez-López, J., & Romaguera, S. (2003). Set-Valued Analysis, 11(4), 323-344. doi:10.1023/a:1025675400451
Doitchinov, D. (1988). On completeness in quasi-metric spaces. Topology and its Applications, 30(2), 127-148. doi:10.1016/0166-8641(88)90012-0
García-Raffi, L. M., Romaguera, S., & Sánchez-Pérez, E. A. (2002). Sequence spaces and asymmetric norms in the theory of computational complexity. Mathematical and Computer Modelling, 36(1-2), 1-11. doi:10.1016/s0895-7177(02)00100-0
[-]