- -

Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton

Mostrar el registro completo del ítem

Gosalvez Ayuso, MA.; Ferrando Jódar, N.; Xing, Y.; Pal, P.; Sato, K.; Cerdá Boluda, J.; Gadea Gironés, R. (2011). Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton. Journal of Micromechanics and Microengineering. 21(6). https://doi.org/10.1088/0960-1317/21/6/065017

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/58290

Ficheros en el ítem

Metadatos del ítem

Título: Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton
Autor: Gosalvez Ayuso, Miguel Angel Ferrando Jódar, Néstor Xing, Yan Pal, Prem Sato, Kazuo Cerdá Boluda, Joaquín Gadea Gironés, Rafael
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
An evolutionary algorithm is presented for the automated calibration of the continuous cellular automaton for the simulation of isotropic and anisotropic wet chemical etching of silicon in as many as 31 widely different ...[+]
Palabras clave: Single-crystal silicon
Derechos de uso: Cerrado
Fuente:
Journal of Micromechanics and Microengineering. (issn: 0960-1317 ) (eissn: 1361-6439 )
DOI: 10.1088/0960-1317/21/6/065017
Editorial:
IOP Publishing: Hybrid Open Access
Versión del editor: http://dx.doi.org/10.1088/0960-1317/21/6/065017
Código del Proyecto:
info:eu-repo/grantAgreement/MEXT//19201026/
info:eu-repo/grantAgreement/MEXT//70008053/
info:eu-repo/grantAgreement/UPV//PAID-09-09/
info:eu-repo/grantAgreement/NSFC//51075073/
Agradecimientos:
We acknowledge support by MEXT Grant in Aid Research (Kakenhi: Silicon etching (A) 19201026 and 70008053), the Global COE Program of Japan (GCOE, Wakate JSPS Young Scientist Fund), the Ramon y Cajal Fellowship Program by ...[+]
Tipo: Artículo

References

Gosálvez, M. A., Sato, K., Foster, A. S., Nieminen, R. M., & Tanaka, H. (2007). An atomistic introduction to anisotropic etching. Journal of Micromechanics and Microengineering, 17(4), S1-S26. doi:10.1088/0960-1317/17/4/s01

Gosálvez, M. A., Zubel, I., & Viinikka, E. (2010). Wet Etching of Silicon. Handbook of Silicon Based MEMS Materials and Technologies, 375-407. doi:10.1016/b978-0-8155-1594-4.00024-3

Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2006). Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon. Applied Physics Letters, 89(21), 213102. doi:10.1063/1.2388860 [+]
Gosálvez, M. A., Sato, K., Foster, A. S., Nieminen, R. M., & Tanaka, H. (2007). An atomistic introduction to anisotropic etching. Journal of Micromechanics and Microengineering, 17(4), S1-S26. doi:10.1088/0960-1317/17/4/s01

Gosálvez, M. A., Zubel, I., & Viinikka, E. (2010). Wet Etching of Silicon. Handbook of Silicon Based MEMS Materials and Technologies, 375-407. doi:10.1016/b978-0-8155-1594-4.00024-3

Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2006). Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon. Applied Physics Letters, 89(21), 213102. doi:10.1063/1.2388860

Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2010). Level Set Approach to Anisotropic Wet Etching of Silicon. Sensors, 10(5), 4950-4967. doi:10.3390/s100504950

Fruhauf, J., Trautmann, K., Wittig, J., & Zielke, D. (1993). A simulation tool for orientation dependent etching. Journal of Micromechanics and Microengineering, 3(3), 113-115. doi:10.1088/0960-1317/3/3/004

Zhenjun Zhu, & Chang Liu. (2000). Micromachining process simulation using a continuous cellular automata method. Journal of Microelectromechanical Systems, 9(2), 252-261. doi:10.1109/84.846706

Xing, Y., Gosálvez, M. A., & Sato, K. (2007). Step flow-based cellular automaton for the simulation of anisotropic etching of complex MEMS structures. New Journal of Physics, 9(12), 436-436. doi:10.1088/1367-2630/9/12/436

Zhou, Z., Huang, Q., Li, W., & Deng, W. (2007). A cellular automaton-based simulator for silicon anisotropic etching processes considering high index planes. Journal of Micromechanics and Microengineering, 17(4), S38-S49. doi:10.1088/0960-1317/17/4/s03

Gosalvez, M. A., Yan Xing, & Sato, K. (2008). Analytical Solution of the Continuous Cellular Automaton for Anisotropic Etching. Journal of Microelectromechanical Systems, 17(2), 410-431. doi:10.1109/jmems.2008.916339

Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2008). Atomistic methods for the simulation of evolving surfaces. Journal of Micromechanics and Microengineering, 18(5), 055029. doi:10.1088/0960-1317/18/5/055029

Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2009). Discrete and continuous cellular automata for the simulation of propagating surfaces. Sensors and Actuators A: Physical, 155(1), 98-112. doi:10.1016/j.sna.2009.08.012

Zhou, Z., Huang, Q., & Li, W. (2009). Modeling and Simulations of Anisotropic Etching of Silicon in Alkaline Solutions with Experimental Verification. Journal of The Electrochemical Society, 156(2), F29. doi:10.1149/1.3031485

Gosálvez, M. ., Foster, A. ., & Nieminen, R. . (2002). Atomistic simulations of surface coverage effects in anisotropic wet chemical etching of crystalline silicon. Applied Surface Science, 202(3-4), 160-182. doi:10.1016/s0169-4332(02)00903-0

Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Computer Physics Communications, 182(3), 628-640. doi:10.1016/j.cpc.2010.11.004

Pal, P., & Sato, K. (2009). Complex three-dimensional structures in Si{1 0 0} using wet bulk micromachining. Journal of Micromechanics and Microengineering, 19(10), 105008. doi:10.1088/0960-1317/19/10/105008

Pal, P., Gosalvez, M. A., & Sato, K. (2010). Silicon Micromachining Based on Surfactant-Added Tetramethyl Ammonium Hydroxide: Etching Mechanism and Advanced Applications. Japanese Journal of Applied Physics, 49(5), 056702. doi:10.1143/jjap.49.056702

Pal, P., Sato, K., Gosalvez, M. A., Tang, B., Hida, H., & Shikida, M. (2010). Fabrication of novel microstructures based on orientation-dependent adsorption of surfactant molecules in a TMAH solution. Journal of Micromechanics and Microengineering, 21(1), 015008. doi:10.1088/0960-1317/21/1/015008

Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1), 3-14. doi:10.1109/72.265956

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs. doi:10.1007/978-3-662-07418-3

Bäck, T., Fogel, D., & Michalewicz, Z. (Eds.). (2000). Evolutionary Computation 2. doi:10.1201/9781420034349

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization. Evolutionary Computation, 1(1), 25-49. doi:10.1162/evco.1993.1.1.25

Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y., & Yamamoto, M. (1998). Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sensors and Actuators A: Physical, 64(1), 87-93. doi:10.1016/s0924-4247(97)01658-0

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem