- -

Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gosalvez Ayuso, Miguel Angel es_ES
dc.contributor.author Ferrando Jódar, Néstor es_ES
dc.contributor.author Xing, Yan es_ES
dc.contributor.author Pal, Prem es_ES
dc.contributor.author Sato, Kazuo es_ES
dc.contributor.author Cerdá Boluda, Joaquín es_ES
dc.contributor.author Gadea Gironés, Rafael es_ES
dc.date.accessioned 2015-11-30T08:23:58Z
dc.date.available 2015-11-30T08:23:58Z
dc.date.issued 2011-06
dc.identifier.issn 0960-1317
dc.identifier.uri http://hdl.handle.net/10251/58290
dc.description.abstract An evolutionary algorithm is presented for the automated calibration of the continuous cellular automaton for the simulation of isotropic and anisotropic wet chemical etching of silicon in as many as 31 widely different and technologically relevant etchants, including KOH, KOH+IPA, TMAH and TMAH+Triton, in various concentrations and temperatures. Based on state-of-the-art evolutionary operators, we implement a robust algorithm for the simultaneous optimization of roughly 150 microscopic removal rates based on the minimization of a cost function with four quantitative error measures, including (i) the error between simulated and experimental macroscopic etch rates for numerous surface orientations all over the unit sphere, (ii) the error due to underetching asymmetries and floor corrugation features observed in simulated silicon samples masked using a circular pattern, (iii) the error associated with departures from a step-flow-based hierarchy in the values of the microscopic removal rates, and (iv) the error associated with deviations from a step-flow-based clustering of the microscopic removal rates. For the first time, we present the calibration and successful simulation of two technologically relevant CMOS compatible etchants, namely TMAH and, especially, TMAH+Triton, providing several comparisons between simulated and experimental MEMS structures based on multi-step etching in these etchants. es_ES
dc.description.sponsorship We acknowledge support by MEXT Grant in Aid Research (Kakenhi: Silicon etching (A) 19201026 and 70008053), the Global COE Program of Japan (GCOE, Wakate JSPS Young Scientist Fund), the Ramon y Cajal Fellowship Program by the Spanish Ministry of Science and Innovation, Programa de Becas de Excelencia de la Universidad Politecnica de Valencia (PAID-09-09), and NSFC no 51075073 and SRF for ROCS, SEM of China. JC is thankful to the Nvidia Professor Partnership Program. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Journal of Micromechanics and Microengineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Single-crystal silicon es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0960-1317/21/6/065017
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//19201026/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//70008053/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-09-09/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51075073/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Gosalvez Ayuso, MA.; Ferrando Jódar, N.; Xing, Y.; Pal, P.; Sato, K.; Cerdá Boluda, J.; Gadea Gironés, R. (2011). Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton. Journal of Micromechanics and Microengineering. 21(6). https://doi.org/10.1088/0960-1317/21/6/065017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0960-1317/21/6/065017 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 206239 es_ES
dc.identifier.eissn 1361-6439
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Ministry of Education, Culture, Sports, Science and Technology, Japón es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Gosálvez, M. A., Sato, K., Foster, A. S., Nieminen, R. M., & Tanaka, H. (2007). An atomistic introduction to anisotropic etching. Journal of Micromechanics and Microengineering, 17(4), S1-S26. doi:10.1088/0960-1317/17/4/s01 es_ES
dc.description.references Gosálvez, M. A., Zubel, I., & Viinikka, E. (2010). Wet Etching of Silicon. Handbook of Silicon Based MEMS Materials and Technologies, 375-407. doi:10.1016/b978-0-8155-1594-4.00024-3 es_ES
dc.description.references Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2006). Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon. Applied Physics Letters, 89(21), 213102. doi:10.1063/1.2388860 es_ES
dc.description.references Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2010). Level Set Approach to Anisotropic Wet Etching of Silicon. Sensors, 10(5), 4950-4967. doi:10.3390/s100504950 es_ES
dc.description.references Fruhauf, J., Trautmann, K., Wittig, J., & Zielke, D. (1993). A simulation tool for orientation dependent etching. Journal of Micromechanics and Microengineering, 3(3), 113-115. doi:10.1088/0960-1317/3/3/004 es_ES
dc.description.references Zhenjun Zhu, & Chang Liu. (2000). Micromachining process simulation using a continuous cellular automata method. Journal of Microelectromechanical Systems, 9(2), 252-261. doi:10.1109/84.846706 es_ES
dc.description.references Xing, Y., Gosálvez, M. A., & Sato, K. (2007). Step flow-based cellular automaton for the simulation of anisotropic etching of complex MEMS structures. New Journal of Physics, 9(12), 436-436. doi:10.1088/1367-2630/9/12/436 es_ES
dc.description.references Zhou, Z., Huang, Q., Li, W., & Deng, W. (2007). A cellular automaton-based simulator for silicon anisotropic etching processes considering high index planes. Journal of Micromechanics and Microengineering, 17(4), S38-S49. doi:10.1088/0960-1317/17/4/s03 es_ES
dc.description.references Gosalvez, M. A., Yan Xing, & Sato, K. (2008). Analytical Solution of the Continuous Cellular Automaton for Anisotropic Etching. Journal of Microelectromechanical Systems, 17(2), 410-431. doi:10.1109/jmems.2008.916339 es_ES
dc.description.references Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2008). Atomistic methods for the simulation of evolving surfaces. Journal of Micromechanics and Microengineering, 18(5), 055029. doi:10.1088/0960-1317/18/5/055029 es_ES
dc.description.references Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2009). Discrete and continuous cellular automata for the simulation of propagating surfaces. Sensors and Actuators A: Physical, 155(1), 98-112. doi:10.1016/j.sna.2009.08.012 es_ES
dc.description.references Zhou, Z., Huang, Q., & Li, W. (2009). Modeling and Simulations of Anisotropic Etching of Silicon in Alkaline Solutions with Experimental Verification. Journal of The Electrochemical Society, 156(2), F29. doi:10.1149/1.3031485 es_ES
dc.description.references Gosálvez, M. ., Foster, A. ., & Nieminen, R. . (2002). Atomistic simulations of surface coverage effects in anisotropic wet chemical etching of crystalline silicon. Applied Surface Science, 202(3-4), 160-182. doi:10.1016/s0169-4332(02)00903-0 es_ES
dc.description.references Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Computer Physics Communications, 182(3), 628-640. doi:10.1016/j.cpc.2010.11.004 es_ES
dc.description.references Pal, P., & Sato, K. (2009). Complex three-dimensional structures in Si{1 0 0} using wet bulk micromachining. Journal of Micromechanics and Microengineering, 19(10), 105008. doi:10.1088/0960-1317/19/10/105008 es_ES
dc.description.references Pal, P., Gosalvez, M. A., & Sato, K. (2010). Silicon Micromachining Based on Surfactant-Added Tetramethyl Ammonium Hydroxide: Etching Mechanism and Advanced Applications. Japanese Journal of Applied Physics, 49(5), 056702. doi:10.1143/jjap.49.056702 es_ES
dc.description.references Pal, P., Sato, K., Gosalvez, M. A., Tang, B., Hida, H., & Shikida, M. (2010). Fabrication of novel microstructures based on orientation-dependent adsorption of surfactant molecules in a TMAH solution. Journal of Micromechanics and Microengineering, 21(1), 015008. doi:10.1088/0960-1317/21/1/015008 es_ES
dc.description.references Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1), 3-14. doi:10.1109/72.265956 es_ES
dc.description.references Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs. doi:10.1007/978-3-662-07418-3 es_ES
dc.description.references Bäck, T., Fogel, D., & Michalewicz, Z. (Eds.). (2000). Evolutionary Computation 2. doi:10.1201/9781420034349 es_ES
dc.description.references Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization. Evolutionary Computation, 1(1), 25-49. doi:10.1162/evco.1993.1.1.25 es_ES
dc.description.references Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y., & Yamamoto, M. (1998). Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sensors and Actuators A: Physical, 64(1), 87-93. doi:10.1016/s0924-4247(97)01658-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem