Mostrar el registro sencillo del ítem
dc.contributor.author | Gosalvez Ayuso, Miguel Angel | es_ES |
dc.contributor.author | Ferrando Jódar, Néstor | es_ES |
dc.contributor.author | Xing, Yan | es_ES |
dc.contributor.author | Pal, Prem | es_ES |
dc.contributor.author | Sato, Kazuo | es_ES |
dc.contributor.author | Cerdá Boluda, Joaquín | es_ES |
dc.contributor.author | Gadea Gironés, Rafael | es_ES |
dc.date.accessioned | 2015-11-30T08:23:58Z | |
dc.date.available | 2015-11-30T08:23:58Z | |
dc.date.issued | 2011-06 | |
dc.identifier.issn | 0960-1317 | |
dc.identifier.uri | http://hdl.handle.net/10251/58290 | |
dc.description.abstract | An evolutionary algorithm is presented for the automated calibration of the continuous cellular automaton for the simulation of isotropic and anisotropic wet chemical etching of silicon in as many as 31 widely different and technologically relevant etchants, including KOH, KOH+IPA, TMAH and TMAH+Triton, in various concentrations and temperatures. Based on state-of-the-art evolutionary operators, we implement a robust algorithm for the simultaneous optimization of roughly 150 microscopic removal rates based on the minimization of a cost function with four quantitative error measures, including (i) the error between simulated and experimental macroscopic etch rates for numerous surface orientations all over the unit sphere, (ii) the error due to underetching asymmetries and floor corrugation features observed in simulated silicon samples masked using a circular pattern, (iii) the error associated with departures from a step-flow-based hierarchy in the values of the microscopic removal rates, and (iv) the error associated with deviations from a step-flow-based clustering of the microscopic removal rates. For the first time, we present the calibration and successful simulation of two technologically relevant CMOS compatible etchants, namely TMAH and, especially, TMAH+Triton, providing several comparisons between simulated and experimental MEMS structures based on multi-step etching in these etchants. | es_ES |
dc.description.sponsorship | We acknowledge support by MEXT Grant in Aid Research (Kakenhi: Silicon etching (A) 19201026 and 70008053), the Global COE Program of Japan (GCOE, Wakate JSPS Young Scientist Fund), the Ramon y Cajal Fellowship Program by the Spanish Ministry of Science and Innovation, Programa de Becas de Excelencia de la Universidad Politecnica de Valencia (PAID-09-09), and NSFC no 51075073 and SRF for ROCS, SEM of China. JC is thankful to the Nvidia Professor Partnership Program. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Journal of Micromechanics and Microengineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Single-crystal silicon | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0960-1317/21/6/065017 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEXT//19201026/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEXT//70008053/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-09-09/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//51075073/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Gosalvez Ayuso, MA.; Ferrando Jódar, N.; Xing, Y.; Pal, P.; Sato, K.; Cerdá Boluda, J.; Gadea Gironés, R. (2011). Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton. Journal of Micromechanics and Microengineering. 21(6). https://doi.org/10.1088/0960-1317/21/6/065017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/0960-1317/21/6/065017 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 206239 | es_ES |
dc.identifier.eissn | 1361-6439 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Ministry of Education, Culture, Sports, Science and Technology, Japón | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Gosálvez, M. A., Sato, K., Foster, A. S., Nieminen, R. M., & Tanaka, H. (2007). An atomistic introduction to anisotropic etching. Journal of Micromechanics and Microengineering, 17(4), S1-S26. doi:10.1088/0960-1317/17/4/s01 | es_ES |
dc.description.references | Gosálvez, M. A., Zubel, I., & Viinikka, E. (2010). Wet Etching of Silicon. Handbook of Silicon Based MEMS Materials and Technologies, 375-407. doi:10.1016/b978-0-8155-1594-4.00024-3 | es_ES |
dc.description.references | Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2006). Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon. Applied Physics Letters, 89(21), 213102. doi:10.1063/1.2388860 | es_ES |
dc.description.references | Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2010). Level Set Approach to Anisotropic Wet Etching of Silicon. Sensors, 10(5), 4950-4967. doi:10.3390/s100504950 | es_ES |
dc.description.references | Fruhauf, J., Trautmann, K., Wittig, J., & Zielke, D. (1993). A simulation tool for orientation dependent etching. Journal of Micromechanics and Microengineering, 3(3), 113-115. doi:10.1088/0960-1317/3/3/004 | es_ES |
dc.description.references | Zhenjun Zhu, & Chang Liu. (2000). Micromachining process simulation using a continuous cellular automata method. Journal of Microelectromechanical Systems, 9(2), 252-261. doi:10.1109/84.846706 | es_ES |
dc.description.references | Xing, Y., Gosálvez, M. A., & Sato, K. (2007). Step flow-based cellular automaton for the simulation of anisotropic etching of complex MEMS structures. New Journal of Physics, 9(12), 436-436. doi:10.1088/1367-2630/9/12/436 | es_ES |
dc.description.references | Zhou, Z., Huang, Q., Li, W., & Deng, W. (2007). A cellular automaton-based simulator for silicon anisotropic etching processes considering high index planes. Journal of Micromechanics and Microengineering, 17(4), S38-S49. doi:10.1088/0960-1317/17/4/s03 | es_ES |
dc.description.references | Gosalvez, M. A., Yan Xing, & Sato, K. (2008). Analytical Solution of the Continuous Cellular Automaton for Anisotropic Etching. Journal of Microelectromechanical Systems, 17(2), 410-431. doi:10.1109/jmems.2008.916339 | es_ES |
dc.description.references | Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2008). Atomistic methods for the simulation of evolving surfaces. Journal of Micromechanics and Microengineering, 18(5), 055029. doi:10.1088/0960-1317/18/5/055029 | es_ES |
dc.description.references | Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2009). Discrete and continuous cellular automata for the simulation of propagating surfaces. Sensors and Actuators A: Physical, 155(1), 98-112. doi:10.1016/j.sna.2009.08.012 | es_ES |
dc.description.references | Zhou, Z., Huang, Q., & Li, W. (2009). Modeling and Simulations of Anisotropic Etching of Silicon in Alkaline Solutions with Experimental Verification. Journal of The Electrochemical Society, 156(2), F29. doi:10.1149/1.3031485 | es_ES |
dc.description.references | Gosálvez, M. ., Foster, A. ., & Nieminen, R. . (2002). Atomistic simulations of surface coverage effects in anisotropic wet chemical etching of crystalline silicon. Applied Surface Science, 202(3-4), 160-182. doi:10.1016/s0169-4332(02)00903-0 | es_ES |
dc.description.references | Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Computer Physics Communications, 182(3), 628-640. doi:10.1016/j.cpc.2010.11.004 | es_ES |
dc.description.references | Pal, P., & Sato, K. (2009). Complex three-dimensional structures in Si{1 0 0} using wet bulk micromachining. Journal of Micromechanics and Microengineering, 19(10), 105008. doi:10.1088/0960-1317/19/10/105008 | es_ES |
dc.description.references | Pal, P., Gosalvez, M. A., & Sato, K. (2010). Silicon Micromachining Based on Surfactant-Added Tetramethyl Ammonium Hydroxide: Etching Mechanism and Advanced Applications. Japanese Journal of Applied Physics, 49(5), 056702. doi:10.1143/jjap.49.056702 | es_ES |
dc.description.references | Pal, P., Sato, K., Gosalvez, M. A., Tang, B., Hida, H., & Shikida, M. (2010). Fabrication of novel microstructures based on orientation-dependent adsorption of surfactant molecules in a TMAH solution. Journal of Micromechanics and Microengineering, 21(1), 015008. doi:10.1088/0960-1317/21/1/015008 | es_ES |
dc.description.references | Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 5(1), 3-14. doi:10.1109/72.265956 | es_ES |
dc.description.references | Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs. doi:10.1007/978-3-662-07418-3 | es_ES |
dc.description.references | Bäck, T., Fogel, D., & Michalewicz, Z. (Eds.). (2000). Evolutionary Computation 2. doi:10.1201/9781420034349 | es_ES |
dc.description.references | Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization. Evolutionary Computation, 1(1), 25-49. doi:10.1162/evco.1993.1.1.25 | es_ES |
dc.description.references | Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y., & Yamamoto, M. (1998). Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sensors and Actuators A: Physical, 64(1), 87-93. doi:10.1016/s0924-4247(97)01658-0 | es_ES |