R. J. Heinsohn and R. L.Kabel, Sources and Control of Air Pollution, Prentice Hall, 1999
TUNNICLIFFE, W. (1994). Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. The Lancet, 344(8939-8940), 1733-1736. doi:10.1016/s0140-6736(94)92886-x
Shima, M., & Adachi, M. (2000). Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren. International Journal of Epidemiology, 29(5), 862-870. doi:10.1093/ije/29.5.862
[+]
R. J. Heinsohn and R. L.Kabel, Sources and Control of Air Pollution, Prentice Hall, 1999
TUNNICLIFFE, W. (1994). Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. The Lancet, 344(8939-8940), 1733-1736. doi:10.1016/s0140-6736(94)92886-x
Shima, M., & Adachi, M. (2000). Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren. International Journal of Epidemiology, 29(5), 862-870. doi:10.1093/ije/29.5.862
U.S. Environmental Protection Agency (EPA), Office of Environmental Health Hazard Assessment (OEHHA), Non-cancer Health Effects (RELs), California, DC, USA, 1999
Mukherjee, A., Prasanna, M., Lane, M., Go, R., Dunayevskiy, I., Tsekoun, A., & Patel, C. K. N. (2008). Optically multiplexed multi-gas detection using quantum cascade laser photoacoustic spectroscopy. Applied Optics, 47(27), 4884. doi:10.1364/ao.47.004884
Venema, A., Nieuwkoop, E., Vellekoop, M. J., Nieuwenhuizen, M. S., & Barendsz, A. W. (1986). Design aspects of saw gas sensors. Sensors and Actuators, 10(1-2), 47-64. doi:10.1016/0250-6874(86)80034-8
Nomani, M. W. K., Kersey, D., James, J., Diwan, D., Vogt, T., Webb, R. A., & Koley, G. (2011). Highly sensitive and multidimensional detection of NO2 using In2O3 thin films. Sensors and Actuators B: Chemical, 160(1), 251-259. doi:10.1016/j.snb.2011.07.044
Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., … Zhou, C. (2004). Detection of NO2down to ppb Levels Using Individual and Multiple In2O3Nanowire Devices. Nano Letters, 4(10), 1919-1924. doi:10.1021/nl0489283
Choi, S.-W., Katoch, A., Sun, G.-J., Wu, P., & Kim, S. S. (2013). NO2-sensing performance of SnO2 microrods by functionalization of Ag nanoparticles. Journal of Materials Chemistry C, 1(16), 2834. doi:10.1039/c3tc00602f
Liang, X., Yang, S., Li, J., Zhang, H., Diao, Q., Zhao, W., & Lu, G. (2011). Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary. Sensors and Actuators B: Chemical, 158(1), 1-8. doi:10.1016/j.snb.2011.02.051
Wang, R., Li, G., Dong, Y., Chi, Y., & Chen, G. (2013). Carbon Quantum Dot-Functionalized Aerogels for NO2Gas Sensing. Analytical Chemistry, 85(17), 8065-8069. doi:10.1021/ac401880h
Chung, M. G., Kim, D. H., Lee, H. M., Kim, T., Choi, J. H., Seo, D. kyun, … Kim, Y. H. (2012). Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensors and Actuators B: Chemical, 166-167, 172-176. doi:10.1016/j.snb.2012.02.036
OHIRA, S., WANIGASEKARA, E., RUDKEVICH, D., & DASGUPTA, P. (2009). Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes. Talanta, 77(5), 1814-1820. doi:10.1016/j.talanta.2008.10.024
J. Mokhari , M. R.Naimi-Jamal, H.Hamzehal, 11th international Electronic Conference on Synthetic Organic Chemistry (ECSOC-11), 2007
Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41(3), 1130-1172. doi:10.1039/c1cs15132k
Wang, D., Shiraishi, Y., & Hirai, T. (2010). A distyryl BODIPY derivative as a fluorescent probe for selective detection of chromium(III). Tetrahedron Letters, 51(18), 2545-2549. doi:10.1016/j.tetlet.2010.03.013
Xie, X., & Qin, Y. (2011). A dual functional near infrared fluorescent probe based on the bodipy fluorophores for selective detection of copper and aluminum ions. Sensors and Actuators B: Chemical, 156(1), 213-217. doi:10.1016/j.snb.2011.04.020
Wang, D., Shiraishi, Y., & Hirai, T. (2011). A BODIPY-based fluorescent chemodosimeter for Cu(ii) driven by an oxidative dehydrogenation mechanism. Chemical Communications, 47(9), 2673. doi:10.1039/c0cc04069j
Sun, H.-B., Liu, S.-J., Ma, T.-C., Song, N.-N., Zhao, Q., & Huang, W. (2011). An excellent BODIPY dye containing a benzo[2,1,3]thiadiazole bridge as a highly selective colorimetric and fluorescent probe for Hg2+ with naked-eye detection. New Journal of Chemistry, 35(6), 1194. doi:10.1039/c0nj00850h
Son, H., Lee, J. H., Kim, Y.-R., Lee, I. S., Han, S., Liu, X., … Jung, J. H. (2012). A BODIPY-functionalized bimetallic probe for sensitive and selective color-fluorometric chemosensing of Hg2+. The Analyst, 137(17), 3914. doi:10.1039/c2an35704f
Lu, H., Mack, J., Yang, Y., & Shen, Z. (2014). Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev., 43(13), 4778-4823. doi:10.1039/c4cs00030g
Loudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381n
Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070
Jiao, L., Yu, C., Li, J., Wang, Z., Wu, M., & Hao, E. (2009). β-Formyl-BODIPYs from the Vilsmeier−Haack Reaction. The Journal of Organic Chemistry, 74(19), 7525-7528. doi:10.1021/jo901407h
Cheng, G., Fan, J., Sun, W., Sui, K., Jin, X., Wang, J., & Peng, X. (2013). A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. The Analyst, 138(20), 6091. doi:10.1039/c3an01152f
[-]