Mostrar el registro sencillo del ítem
dc.contributor.author | Juárez, L.Alberto | es_ES |
dc.contributor.author | Costero, Ana M. | es_ES |
dc.contributor.author | Parra Álvarez, Margarita | es_ES |
dc.contributor.author | Gil Grau, Salvador | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.date.accessioned | 2016-01-11T12:00:36Z | |
dc.date.available | 2016-01-11T12:00:36Z | |
dc.date.issued | 2014-11 | |
dc.identifier.issn | 1359-7345 | |
dc.identifier.uri | http://hdl.handle.net/10251/59641 | |
dc.description.abstract | [EN] A novel colorimetric probe for the selective and sensitive detection of NO2 in solution and in air based on a BODIPY core containing an oxime group has been prepared. | es_ES |
dc.description.sponsorship | We thank the Spanish Government (MAT2012-38429-C04) and Generalitat Valenciana (PROMETEOII/2014/047) for support. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. | |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Selective detection | es_ES |
dc.subject | Fluorescent-probe | es_ES |
dc.subject | Nitrogen-Dioxide | es_ES |
dc.subject | Design | es_ES |
dc.subject | Dyes | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A new chromo-fluorogenic probe based on BODIPY for NO2 detection in air | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C4CC08654F | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Juárez, L.; Costero, AM.; Parra Álvarez, M.; Gil Grau, S.; Sancenón Galarza, F.; Martínez Mañez, R. (2014). A new chromo-fluorogenic probe based on BODIPY for NO2 detection in air. Chemical Communications. 51(9):1725-1727. https://doi.org/10.1039/C4CC08654F | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/C4CC08654F | es_ES |
dc.description.upvformatpinicio | 1725 | es_ES |
dc.description.upvformatpfin | 1727 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 51 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 285166 | |
dc.identifier.eissn | 1364-548X | |
dc.identifier.pmid | 25518737 | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | R. J. Heinsohn and R. L.Kabel, Sources and Control of Air Pollution, Prentice Hall, 1999 | es_ES |
dc.description.references | TUNNICLIFFE, W. (1994). Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. The Lancet, 344(8939-8940), 1733-1736. doi:10.1016/s0140-6736(94)92886-x | es_ES |
dc.description.references | Shima, M., & Adachi, M. (2000). Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren. International Journal of Epidemiology, 29(5), 862-870. doi:10.1093/ije/29.5.862 | es_ES |
dc.description.references | U.S. Environmental Protection Agency (EPA), Office of Environmental Health Hazard Assessment (OEHHA), Non-cancer Health Effects (RELs), California, DC, USA, 1999 | es_ES |
dc.description.references | Mukherjee, A., Prasanna, M., Lane, M., Go, R., Dunayevskiy, I., Tsekoun, A., & Patel, C. K. N. (2008). Optically multiplexed multi-gas detection using quantum cascade laser photoacoustic spectroscopy. Applied Optics, 47(27), 4884. doi:10.1364/ao.47.004884 | es_ES |
dc.description.references | Venema, A., Nieuwkoop, E., Vellekoop, M. J., Nieuwenhuizen, M. S., & Barendsz, A. W. (1986). Design aspects of saw gas sensors. Sensors and Actuators, 10(1-2), 47-64. doi:10.1016/0250-6874(86)80034-8 | es_ES |
dc.description.references | Nomani, M. W. K., Kersey, D., James, J., Diwan, D., Vogt, T., Webb, R. A., & Koley, G. (2011). Highly sensitive and multidimensional detection of NO2 using In2O3 thin films. Sensors and Actuators B: Chemical, 160(1), 251-259. doi:10.1016/j.snb.2011.07.044 | es_ES |
dc.description.references | Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., … Zhou, C. (2004). Detection of NO2down to ppb Levels Using Individual and Multiple In2O3Nanowire Devices. Nano Letters, 4(10), 1919-1924. doi:10.1021/nl0489283 | es_ES |
dc.description.references | Choi, S.-W., Katoch, A., Sun, G.-J., Wu, P., & Kim, S. S. (2013). NO2-sensing performance of SnO2 microrods by functionalization of Ag nanoparticles. Journal of Materials Chemistry C, 1(16), 2834. doi:10.1039/c3tc00602f | es_ES |
dc.description.references | Liang, X., Yang, S., Li, J., Zhang, H., Diao, Q., Zhao, W., & Lu, G. (2011). Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary. Sensors and Actuators B: Chemical, 158(1), 1-8. doi:10.1016/j.snb.2011.02.051 | es_ES |
dc.description.references | Wang, R., Li, G., Dong, Y., Chi, Y., & Chen, G. (2013). Carbon Quantum Dot-Functionalized Aerogels for NO2Gas Sensing. Analytical Chemistry, 85(17), 8065-8069. doi:10.1021/ac401880h | es_ES |
dc.description.references | Chung, M. G., Kim, D. H., Lee, H. M., Kim, T., Choi, J. H., Seo, D. kyun, … Kim, Y. H. (2012). Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensors and Actuators B: Chemical, 166-167, 172-176. doi:10.1016/j.snb.2012.02.036 | es_ES |
dc.description.references | OHIRA, S., WANIGASEKARA, E., RUDKEVICH, D., & DASGUPTA, P. (2009). Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes. Talanta, 77(5), 1814-1820. doi:10.1016/j.talanta.2008.10.024 | es_ES |
dc.description.references | J. Mokhari , M. R.Naimi-Jamal, H.Hamzehal, 11th international Electronic Conference on Synthetic Organic Chemistry (ECSOC-11), 2007 | es_ES |
dc.description.references | Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41(3), 1130-1172. doi:10.1039/c1cs15132k | es_ES |
dc.description.references | Wang, D., Shiraishi, Y., & Hirai, T. (2010). A distyryl BODIPY derivative as a fluorescent probe for selective detection of chromium(III). Tetrahedron Letters, 51(18), 2545-2549. doi:10.1016/j.tetlet.2010.03.013 | es_ES |
dc.description.references | Xie, X., & Qin, Y. (2011). A dual functional near infrared fluorescent probe based on the bodipy fluorophores for selective detection of copper and aluminum ions. Sensors and Actuators B: Chemical, 156(1), 213-217. doi:10.1016/j.snb.2011.04.020 | es_ES |
dc.description.references | Wang, D., Shiraishi, Y., & Hirai, T. (2011). A BODIPY-based fluorescent chemodosimeter for Cu(ii) driven by an oxidative dehydrogenation mechanism. Chemical Communications, 47(9), 2673. doi:10.1039/c0cc04069j | es_ES |
dc.description.references | Sun, H.-B., Liu, S.-J., Ma, T.-C., Song, N.-N., Zhao, Q., & Huang, W. (2011). An excellent BODIPY dye containing a benzo[2,1,3]thiadiazole bridge as a highly selective colorimetric and fluorescent probe for Hg2+ with naked-eye detection. New Journal of Chemistry, 35(6), 1194. doi:10.1039/c0nj00850h | es_ES |
dc.description.references | Son, H., Lee, J. H., Kim, Y.-R., Lee, I. S., Han, S., Liu, X., … Jung, J. H. (2012). A BODIPY-functionalized bimetallic probe for sensitive and selective color-fluorometric chemosensing of Hg2+. The Analyst, 137(17), 3914. doi:10.1039/c2an35704f | es_ES |
dc.description.references | Lu, H., Mack, J., Yang, Y., & Shen, Z. (2014). Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev., 43(13), 4778-4823. doi:10.1039/c4cs00030g | es_ES |
dc.description.references | Loudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381n | es_ES |
dc.description.references | Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070 | es_ES |
dc.description.references | Jiao, L., Yu, C., Li, J., Wang, Z., Wu, M., & Hao, E. (2009). β-Formyl-BODIPYs from the Vilsmeier−Haack Reaction. The Journal of Organic Chemistry, 74(19), 7525-7528. doi:10.1021/jo901407h | es_ES |
dc.description.references | Cheng, G., Fan, J., Sun, W., Sui, K., Jin, X., Wang, J., & Peng, X. (2013). A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. The Analyst, 138(20), 6091. doi:10.1039/c3an01152f | es_ES |