Urchueguía, J. F., Zacarés, M., Corberán, J. M., Montero, Á., Martos, J., & Witte, H. (2008). Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast. Energy Conversion and Management, 49(10), 2917-2923. doi:10.1016/j.enconman.2008.03.001
http://www.marshallhvac.com/residential-geothermal.html
Genchi, Y., Kikegawa, Y., & Inaba, A. (2002). CO2 payback–time assessment of a regional-scale heating and cooling system using a ground source heat–pump in a high energy–consumption area in Tokyo. Applied Energy, 71(3), 147-160. doi:10.1016/s0306-2619(02)00010-7
[+]
Urchueguía, J. F., Zacarés, M., Corberán, J. M., Montero, Á., Martos, J., & Witte, H. (2008). Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast. Energy Conversion and Management, 49(10), 2917-2923. doi:10.1016/j.enconman.2008.03.001
http://www.marshallhvac.com/residential-geothermal.html
Genchi, Y., Kikegawa, Y., & Inaba, A. (2002). CO2 payback–time assessment of a regional-scale heating and cooling system using a ground source heat–pump in a high energy–consumption area in Tokyo. Applied Energy, 71(3), 147-160. doi:10.1016/s0306-2619(02)00010-7
Sanner, B., Karytsas, C., Mendrinos, D., & Rybach, L. (2003). Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics, 32(4-6), 579-588. doi:10.1016/s0375-6505(03)00060-9
Pardo, N., Montero, Á., Sala, A., Martos, J., & Urchueguía, J. F. (2011). Efficiency improvement of a ground coupled heat pump system from energy management. Applied Thermal Engineering, 31(2-3), 391-398. doi:10.1016/j.applthermaleng.2010.09.016
Pardo, N., Montero, Á., Martos, J., & Urchueguía, J. F. (2010). Optimization of hybrid – ground coupled and air source – heat pump systems in combination with thermal storage. Applied Thermal Engineering, 30(8-9), 1073-1077. doi:10.1016/j.applthermaleng.2010.01.015
http://projects.gtk.fi/Annex21/trt.htm/
Beier, R. A. (2011). Vertical temperature profile in ground heat exchanger during in-situ test. Renewable Energy, 36(5), 1578-1587. doi:10.1016/j.renene.2010.10.025
Marcotte, D., & Pasquier, P. (2008). On the estimation of thermal resistance in borehole thermal conductivity test. Renewable Energy, 33(11), 2407-2415. doi:10.1016/j.renene.2008.01.021
Raymond, J., Therrien, R., & Gosselin, L. (2011). Borehole temperature evolution during thermal response tests. Geothermics, 40(1), 69-78. doi:10.1016/j.geothermics.2010.12.002
Beier, R. A., Smith, M. D., & Spitler, J. D. (2011). Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis. Geothermics, 40(1), 79-85. doi:10.1016/j.geothermics.2010.12.007
Bandos, T. V., Montero, Á., Fernández, E., Santander, J. L. G., Isidro, J. M., Pérez, J., … Urchueguía, J. F. (2009). Finite line-source model for borehole heat exchangers: effect of vertical temperature variations. Geothermics, 38(2), 263-270. doi:10.1016/j.geothermics.2009.01.003
Raymond, J., Therrien, R., Gosselin, L., & Lefebvre, R. (2011). A Review of Thermal Response Test Analysis Using Pumping Test Concepts. Ground Water, 49(6), 932-945. doi:10.1111/j.1745-6584.2010.00791.x
Bandos, T. V., Montero, Á., Fernández de Córdoba, P., & Urchueguía, J. F. (2011). Improving parameter estimates obtained from thermal response tests: Effect of ambient air temperature variations. Geothermics, 40(2), 136-143. doi:10.1016/j.geothermics.2011.02.003
Fujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., & Shibata, K. (2009). An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers. Geothermics, 38(4), 399-406. doi:10.1016/j.geothermics.2009.06.002
[-]