- -

Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martos Torres, Julio es_ES
dc.contributor.author Montero Reguera, Álvaro Enrique es_ES
dc.contributor.author Torres Pais, Jose es_ES
dc.contributor.author Soret Medel, Jesús es_ES
dc.contributor.author Martinez, Guillermo es_ES
dc.contributor.author García Olcina, Raimundo es_ES
dc.date.accessioned 2016-01-18T11:08:25Z
dc.date.available 2016-01-18T11:08:25Z
dc.date.issued 2011-07
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/59976
dc.description.abstract The design and field test of a novel sensor system based in autonomous wireless sensors to measure the temperature of the heat transfer fluid along a borehole heat exchanger (BHE) is presented. The system, by means of two specials valves, inserts and extracts miniaturized wireless sensors inside the pipes of the borehole, which are carried by the thermal fluid. Each sensor is embedded in a small sphere of just 25 mm diameter and 8 gr weight, containing a transceiver, a microcontroller, a temperature sensor and a power supply. A wireless data processing unit transmits to the sensors the acquisition configuration before the measurements, and also downloads the temperature data measured by the sensor along its way through the BHE U-tube. This sensor system is intended to improve the conventional thermal response test (TRT) and it allows the collection of information about the thermal characteristics of the geological structure of subsurface and its influence in borehole thermal behaviour, which in turn, facilitates the implementation of TRTs in a more cost-effective and reliable way. es_ES
dc.description.sponsorship This work was supported by the Spanish Government under the projects "Modeling and simulation of complex energetic systems" ("Modelado y simulacion de sistemas energeticos complejos", Ramon y Cajal research program 2005) and "Modeling, simulation and experimental validation of heat transfer in building construction environments" ("Modelado, simulacion y validacion experimental de la transferencia de calor en el entorno de la edificacion", ENE2008-00599/CON). en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Heat pumps es_ES
dc.subject Geothermal energy es_ES
dc.subject Thermal analysis es_ES
dc.subject Wireless sensors es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s110707082
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2008-00599/ES/MODELADO, SIMULACION Y VALIDACION EXPERIMENTAL DE LA TRANSFERENCIA DE CALOR EN EL ENTORNO DE LA EDIFICACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Martos Torres, J.; Montero Reguera, ÁE.; Torres Pais, J.; Soret Medel, J.; Martinez, G.; García Olcina, R. (2011). Novel Wireless Sensor System for Dynamic Characterization of Borehole Heat Exchangers. Sensors. 11(7):7082-7094. https://doi.org/10.3390/s110707082 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s110707082 es_ES
dc.description.upvformatpinicio 7082 es_ES
dc.description.upvformatpfin 7094 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 205624 es_ES
dc.identifier.pmid 22164005 en_EN
dc.identifier.pmcid PMC3231679 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Urchueguía, J. F., Zacarés, M., Corberán, J. M., Montero, Á., Martos, J., & Witte, H. (2008). Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast. Energy Conversion and Management, 49(10), 2917-2923. doi:10.1016/j.enconman.2008.03.001 es_ES
dc.description.references http://www.marshallhvac.com/residential-geothermal.html es_ES
dc.description.references Genchi, Y., Kikegawa, Y., & Inaba, A. (2002). CO2 payback–time assessment of a regional-scale heating and cooling system using a ground source heat–pump in a high energy–consumption area in Tokyo. Applied Energy, 71(3), 147-160. doi:10.1016/s0306-2619(02)00010-7 es_ES
dc.description.references Sanner, B., Karytsas, C., Mendrinos, D., & Rybach, L. (2003). Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics, 32(4-6), 579-588. doi:10.1016/s0375-6505(03)00060-9 es_ES
dc.description.references Pardo, N., Montero, Á., Sala, A., Martos, J., & Urchueguía, J. F. (2011). Efficiency improvement of a ground coupled heat pump system from energy management. Applied Thermal Engineering, 31(2-3), 391-398. doi:10.1016/j.applthermaleng.2010.09.016 es_ES
dc.description.references Pardo, N., Montero, Á., Martos, J., & Urchueguía, J. F. (2010). Optimization of hybrid – ground coupled and air source – heat pump systems in combination with thermal storage. Applied Thermal Engineering, 30(8-9), 1073-1077. doi:10.1016/j.applthermaleng.2010.01.015 es_ES
dc.description.references http://projects.gtk.fi/Annex21/trt.htm/ es_ES
dc.description.references Beier, R. A. (2011). Vertical temperature profile in ground heat exchanger during in-situ test. Renewable Energy, 36(5), 1578-1587. doi:10.1016/j.renene.2010.10.025 es_ES
dc.description.references Marcotte, D., & Pasquier, P. (2008). On the estimation of thermal resistance in borehole thermal conductivity test. Renewable Energy, 33(11), 2407-2415. doi:10.1016/j.renene.2008.01.021 es_ES
dc.description.references Raymond, J., Therrien, R., & Gosselin, L. (2011). Borehole temperature evolution during thermal response tests. Geothermics, 40(1), 69-78. doi:10.1016/j.geothermics.2010.12.002 es_ES
dc.description.references Beier, R. A., Smith, M. D., & Spitler, J. D. (2011). Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis. Geothermics, 40(1), 79-85. doi:10.1016/j.geothermics.2010.12.007 es_ES
dc.description.references Bandos, T. V., Montero, Á., Fernández, E., Santander, J. L. G., Isidro, J. M., Pérez, J., … Urchueguía, J. F. (2009). Finite line-source model for borehole heat exchangers: effect of vertical temperature variations. Geothermics, 38(2), 263-270. doi:10.1016/j.geothermics.2009.01.003 es_ES
dc.description.references Raymond, J., Therrien, R., Gosselin, L., & Lefebvre, R. (2011). A Review of Thermal Response Test Analysis Using Pumping Test Concepts. Ground Water, 49(6), 932-945. doi:10.1111/j.1745-6584.2010.00791.x es_ES
dc.description.references Bandos, T. V., Montero, Á., Fernández de Córdoba, P., & Urchueguía, J. F. (2011). Improving parameter estimates obtained from thermal response tests: Effect of ambient air temperature variations. Geothermics, 40(2), 136-143. doi:10.1016/j.geothermics.2011.02.003 es_ES
dc.description.references Fujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., & Shibata, K. (2009). An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers. Geothermics, 38(4), 399-406. doi:10.1016/j.geothermics.2009.06.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem