- -

Passivity Breakdown of Titanium in LiBr solutions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Passivity Breakdown of Titanium in LiBr solutions

Mostrar el registro completo del ítem

Fernández Domene, RM.; Blasco-Tamarit, E.; García-García, D.; García Antón, J. (2014). Passivity Breakdown of Titanium in LiBr solutions. Journal of The Electrochemical Society. 161(1):25-35. https://doi.org/10.1149/2.035401jes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60567

Ficheros en el ítem

Metadatos del ítem

Título: Passivity Breakdown of Titanium in LiBr solutions
Autor: Fernández Domene, Ramón Manuel Blasco-Tamarit, E. García-García, D.M. García Antón, José
Entidad UPV: Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
The passive behavior of titanium and its susceptibility to undergo localized attack in different LiBr solutions at 25 degrees C have been investigated using different electrochemical techniques: potentiodynamic polarization ...[+]
Palabras clave: Passivity breakdown , Titanium , LiBr
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of The Electrochemical Society. (issn: 0013-4651 ) (eissn: 1945-7111 )
DOI: 10.1149/2.035401jes
Editorial:
Electrochemical Society
Versión del editor: http://dx.doi.org/10.1149/2.035401jes
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2009-07518/ES/ESTUDIO DE LA CORROSION TERMOGALVANICA EN LAS MAQUINAS DE ABSORCION DE LIBR DE DOBLE EFECTO MEDIANTE TECNICAS ELECTROQUIMICAS Y DE IMAGEN/
Agradecimientos:
We wish express our gratitude to the Ministerio de Ciencia e Innovacion (Project CTQ2009-07518), and to Dr. M. Asuncion Jaime. for her translation assistance.
Tipo: Artículo

References

Been J. Grauman J. S. , in: Uhlig's Corrosion Handbook, 2nd ed., Winston Revie R. (ed.), 863-885, Wiley Interscience, New York (2000).

Blasco-Tamarit, E., Igual-Muñoz, A., García Antón, J., & García-García, D. (2007). Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions. Corrosion Science, 49(3), 1000-1026. doi:10.1016/j.corsci.2006.07.007

Huang, Y. Z., & Blackwood, D. J. (2005). Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates. Electrochimica Acta, 51(6), 1099-1107. doi:10.1016/j.electacta.2005.05.051 [+]
Been J. Grauman J. S. , in: Uhlig's Corrosion Handbook, 2nd ed., Winston Revie R. (ed.), 863-885, Wiley Interscience, New York (2000).

Blasco-Tamarit, E., Igual-Muñoz, A., García Antón, J., & García-García, D. (2007). Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions. Corrosion Science, 49(3), 1000-1026. doi:10.1016/j.corsci.2006.07.007

Huang, Y. Z., & Blackwood, D. J. (2005). Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates. Electrochimica Acta, 51(6), 1099-1107. doi:10.1016/j.electacta.2005.05.051

Pan, J., Thierry, D., & Leygraf, C. (1996). Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochimica Acta, 41(7-8), 1143-1153. doi:10.1016/0013-4686(95)00465-3

Assis, S. L. de, Wolynec, S., & Costa, I. (2006). Corrosion characterization of titanium alloys by electrochemical techniques. Electrochimica Acta, 51(8-9), 1815-1819. doi:10.1016/j.electacta.2005.02.121

Birch, J. R., & Burleigh, T. D. (2000). Oxides Formed on Titanium by Polishing, Etching, Anodizing, or Thermal Oxidizing. CORROSION, 56(12), 1233-1241. doi:10.5006/1.3280511

Peláez-Abellán, E., Rocha-Sousa, L., Müller, W.-D., & Guastaldi, A. C. (2007). Electrochemical stability of anodic titanium oxide films grown at potentials higher than 3V in a simulated physiological solution. Corrosion Science, 49(3), 1645-1655. doi:10.1016/j.corsci.2006.08.010

Azumi, K., & Seo, M. (2001). Changes in electrochemical properties of the anodic oxide film formed on titanium during potential sweep. Corrosion Science, 43(3), 533-546. doi:10.1016/s0010-938x(00)00105-0

Alves, V. A., Reis, R. Q., Santos, I. C. B., Souza, D. G., de F. Gonçalves, T., Pereira-da-Silva, M. A., … da Silva, L. A. (2009). In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25°C and 37°C. Corrosion Science, 51(10), 2473-2482. doi:10.1016/j.corsci.2009.06.035

Schmidt, A. M., Azambuja, D. S., & Martini, E. M. A. (2006). Semiconductive properties of titanium anodic oxide films in McIlvaine buffer solution. Corrosion Science, 48(10), 2901-2912. doi:10.1016/j.corsci.2005.10.013

Sellers, M. C. K., & Seebauer, E. G. (2011). Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach. Thin Solid Films, 519(7), 2103-2110. doi:10.1016/j.tsf.2010.10.071

Jiang, Z., Dai, X., & Middleton, H. (2011). Investigation on passivity of titanium under steady-state conditions in acidic solutions. Materials Chemistry and Physics, 126(3), 859-865. doi:10.1016/j.matchemphys.2010.12.028

Kong, D.-S., Lu, W.-H., Feng, Y.-Y., Yu, Z.-Y., Wu, J.-X., Fan, W.-J., & Liu, H.-Y. (2009). Studying on the Point-Defect-Conductive Property of the Semiconducting Anodic Oxide Films on Titanium. Journal of The Electrochemical Society, 156(1), C39. doi:10.1149/1.3021008

Roh, B., & Macdonald, D. D. (2007). Effect of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction. Russian Journal of Electrochemistry, 43(2), 125-135. doi:10.1134/s1023193507020012

Sazou, D., Saltidou, K., & Pagitsas, M. (2012). Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochimica Acta, 76, 48-61. doi:10.1016/j.electacta.2012.04.158

Roberge P. R. , Handbook of Corrosion Engineering, p. 756, McGraw-Hill, New York (2000).

Basame, S. B., & White, H. S. (1995). Scanning electrochemical microscopy of native titanium oxide films. Mapping the potential dependence of spatially-localized electrochemical reactions. The Journal of Physical Chemistry, 99(44), 16430-16435. doi:10.1021/j100044a034

Basame, S. B., & White, H. S. (2000). Pitting Corrosion of Titanium The Relationship Between Pitting Potential and Competitive Anion Adsorption at the Oxide Film/Electrolyte Interface. Journal of The Electrochemical Society, 147(4), 1376. doi:10.1149/1.1393364

Dugdale, I., & Cotton, J. B. (1964). The anodic polarization of titanium in halide solutions. Corrosion Science, 4(1-4), 397-411. doi:10.1016/0010-938x(64)90041-1

Virtanen, S., & Curty, C. (2004). Metastable and Stable Pitting Corrosion of Titanium in Halide Solutions. CORROSION, 60(7), 643-649. doi:10.5006/1.3287839

Trompette, J. L., Massot, L., Arurault, L., & Fontorbes, S. (2011). Influence of the anion specificity on the anodic polarization of titanium. Corrosion Science, 53(4), 1262-1268. doi:10.1016/j.corsci.2010.12.021

Casillas, N. (1994). Pitting Corrosion of Titanium. Journal of The Electrochemical Society, 141(3), 636. doi:10.1149/1.2054783

Beck, T. R. (1973). Pitting of Titanium. Journal of The Electrochemical Society, 120(10), 1310. doi:10.1149/1.2403253

Huo, S., & Meng, X. (1990). The states of bromide on titanium surface prior to pit initiation. Corrosion Science, 31, 281-286. doi:10.1016/0010-938x(90)90120-t

Fernández-Domene, R. M., Blasco-Tamarit, E., García-García, D. M., & García-Antón, J. (2011). Cavitation corrosion and repassivation kinetics of titanium in a heavy brine LiBr solution evaluated by using electrochemical techniques and Confocal Laser Scanning Microscopy. Electrochimica Acta, 58, 264-275. doi:10.1016/j.electacta.2011.09.034

Srikhirin, P., Aphornratana, S., & Chungpaibulpatana, S. (2001). A review of absorption refrigeration technologies. Renewable and Sustainable Energy Reviews, 5(4), 343-372. doi:10.1016/s1364-0321(01)00003-x

Lee R. J. DiGuilio R. M. Jeter S. M. Teja A. S. , ASHRAE Tran., 96(1), (1990).

Guiñon, J. L., Garcia-Anton, J., Pérez-Herranz, V., & Lacoste, G. (1994). Corrosion of Carbon Steels, Stainless Steels, and Titanium in Aqueous Lithium Bromide Solution. CORROSION, 50(3), 240-246. doi:10.5006/1.3293516

Florides, G. A., Kalogirou, S. A., Tassou, S. A., & Wrobel, L. C. (2003). Design and construction of a LiBr–water absorption machine. Energy Conversion and Management, 44(15), 2483-2508. doi:10.1016/s0196-8904(03)00006-2

Misra, R. D., Sahoo, P. K., & Gupta, A. (2005). Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system. International Journal of Refrigeration, 28(3), 331-343. doi:10.1016/j.ijrefrig.2004.09.006

Hamer, W. J., & Wu, Y. (1972). Osmotic Coefficients and Mean Activity Coefficients of Uni‐univalent Electrolytes in Water at 25°C. Journal of Physical and Chemical Reference Data, 1(4), 1047-1100. doi:10.1063/1.3253108

Prausnitz J. M. Lichtenthaler R. N. Azevedo E. G. , Molecular Thermodynamics of Fluid-Phase Equilibria, p. 517, Prentice Hall, Upper Saddle River, NJ (1999).

Blandamer, M. J., Engberts, J. B. F. N., Gleeson, P. T., & Reis, J. C. R. (2005). Activity of water in aqueous systems; A frequently neglected property. Chemical Society Reviews, 34(5), 440. doi:10.1039/b400473f

Selcuk, H., Sene, J. J., Zanoni, M. V. B., Sarikaya, H. Z., & Anderson, M. A. (2004). Behavior of bromide in the photoelectrocatalytic process and bromine generation using nanoporous titanium dioxide thin-film electrodes. Chemosphere, 54(7), 969-974. doi:10.1016/j.chemosphere.2003.09.016

Muñoz, A. I., Antón, J. G., Guiñón, J. L., & Herranz, V. P. (2003). Corrosion Behavior and Galvanic Coupling of Stainless Steels, Titanium, and Alloy 33 in Lithium Bromide Solutions. CORROSION, 59(7), 606-615. doi:10.5006/1.3277591

Muñoz-Portero, M. J., García-Antón, J., Guiñón, J. L., & Leiva-García, R. (2011). Pourbaix diagrams for titanium in concentrated aqueous lithium bromide solutions at 25°C. Corrosion Science, 53(4), 1440-1450. doi:10.1016/j.corsci.2011.01.013

Davydov, A. . (2001). Breakdown of valve metal passivity induced by aggressive anions. Electrochimica Acta, 46(24-25), 3777-3781. doi:10.1016/s0013-4686(01)00664-8

Lin, L. F. (1981). A Point Defect Model for Anodic Passive Films. Journal of The Electrochemical Society, 128(6), 1194. doi:10.1149/1.2127592

Haruna, T. (1997). Theoretical Prediction of the Scan Rate Dependencies of the Pitting Potential and the Probability Distribution in the Induction Time. Journal of The Electrochemical Society, 144(5), 1574. doi:10.1149/1.1837643

Macdonald, D. D. (1992). The Point Defect Model for the Passive State. Journal of The Electrochemical Society, 139(12), 3434. doi:10.1149/1.2069096

Macdonald, D. D. (1999). Passivity–the key to our metals-based civilization. Pure and Applied Chemistry, 71(6), 951-978. doi:10.1351/pac199971060951

Macdonald, D. D. (2011). The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochimica Acta, 56(4), 1761-1772. doi:10.1016/j.electacta.2010.11.005

Macdonald, D. D., & Sun, A. (2006). An electrochemical impedance spectroscopic study of the passive state on Alloy-22. Electrochimica Acta, 51(8-9), 1767-1779. doi:10.1016/j.electacta.2005.02.103

Park, K., Ahn, S., & Kwon, H. (2011). Effects of solution temperature on the kinetic nature of passive film on Ni. Electrochimica Acta, 56(3), 1662-1669. doi:10.1016/j.electacta.2010.09.077

Macdonald, D. D. (2008). On the tenuous nature of passivity and its role in the isolation of HLNW. Journal of Nuclear Materials, 379(1-3), 24-32. doi:10.1016/j.jnucmat.2008.06.004

Paola, A. D. (1989). Semiconducting properties of passive films on stainless steels. Electrochimica Acta, 34(2), 203-210. doi:10.1016/0013-4686(89)87086-0

Gomes, W. P., & Vanmaekelbergh, D. (1996). Impedance spectroscopy at semiconductor electrodes: Review and recent developments. Electrochimica Acta, 41(7-8), 967-973. doi:10.1016/0013-4686(95)00427-0

Da Cunha Belo, M., Hakiki, N. ., & Ferreira, M. G. . (1999). Semiconducting properties of passive films formed on nickel–base alloys type Alloy 600: influence of the alloying elements. Electrochimica Acta, 44(14), 2473-2481. doi:10.1016/s0013-4686(98)00372-7

Hakiki, N. B., Boudin, S., Rondot, B., & Da Cunha Belo, M. (1995). The electronic structure of passive films formed on stainless steels. Corrosion Science, 37(11), 1809-1822. doi:10.1016/0010-938x(95)00084-w

Hamadou, L., Kadri, A., & Benbrahim, N. (2005). Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy. Applied Surface Science, 252(5), 1510-1519. doi:10.1016/j.apsusc.2005.02.135

Wijesinghe, T. L. S. L., & Blackwood, D. J. (2008). Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels. Corrosion Science, 50(1), 23-34. doi:10.1016/j.corsci.2007.06.009

Amri, J., Souier, T., Malki, B., & Baroux, B. (2008). Effect of the final annealing of cold rolled stainless steels sheets on the electronic properties and pit nucleation resistance of passive films. Corrosion Science, 50(2), 431-435. doi:10.1016/j.corsci.2007.08.013

Li, D. G., Wang, J. D., & Chen, D. R. (2012). Influence of potentiostatic aging, temperature and pH on the diffusivity of a point defect in the passive film on Nb in an HCl solution. Electrochimica Acta, 60, 134-146. doi:10.1016/j.electacta.2011.11.024

Fernández-Domene, R. M., Blasco-Tamarit, E., García-García, D. M., & García-Antón, J. (2013). Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution. Electrochimica Acta, 95, 1-11. doi:10.1016/j.electacta.2013.02.024

Urquidi-Macdonald, M. (1989). Theoretical Analysis of the Effects of Alloying Elements on Distribution Functions of Passivity Breakdown. Journal of The Electrochemical Society, 136(4), 961. doi:10.1149/1.2096894

Schmidt, A. M., & Azambuja, D. S. (2006). Electrochemical behavior of Ti and Ti6Al4V in aqueous solutions of citric acid containing halides. Materials Research, 9(4), 387-392. doi:10.1590/s1516-14392006000400008

Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 176(1-2), 275-295. doi:10.1016/s0022-0728(84)80324-1

Valero Vidal, C., & Igual Muñoz, A. (2010). Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy. Electrochimica Acta, 55(28), 8445-8452. doi:10.1016/j.electacta.2010.07.028

Smart, N. G., & Bockris, J. O. (1992). Effect of Water Activity on Corrosion. CORROSION, 48(4), 277-280. doi:10.5006/1.3315933

Frankel, G. S. (1998). Pitting Corrosion of Metals. Journal of The Electrochemical Society, 145(6), 2186. doi:10.1149/1.1838615

Blasco-Tamarit, E., Igual-Muñoz, A., & García-Antón, J. (2007). Galvanic corrosion of high alloyed austenitic stainless steel welds in LiBr systems. Corrosion Science, 49(12), 4452-4471. doi:10.1016/j.corsci.2007.05.020

Crozier, P. S., & Rowley, R. L. (2002). Activity coefficient prediction by osmotic molecular dynamics. Fluid Phase Equilibria, 193(1-2), 53-73. doi:10.1016/s0378-3812(01)00734-8

Burstein, G. T. (1989). The Dissolution and Repassivation of New Titanium Surfaces in Alkaline Methanolic Solution. Journal of The Electrochemical Society, 136(5), 1313. doi:10.1149/1.2096913

Banaś, J., Stypuła, B., Banaś, K., Światowska-Mrowiecka, J., Starowicz, M., & Lelek-Borkowska, U. (2008). Corrosion and passivity of metals in methanol solutions of electrolytes. Journal of Solid State Electrochemistry, 13(11), 1669-1679. doi:10.1007/s10008-008-0649-5

Beck K. O. , Titanium anodizing process, US Patent 2,949, 411 (1960).

Delplancke, J.-L., Degrez, M., Fontana, A., & Winand, R. (1982). Self-colour anodizing of titanium. Surface Technology, 16(2), 153-162. doi:10.1016/0376-4583(82)90033-4

Gaul, E. (1993). Coloring titanium and related metals by electrochemical oxidation. Journal of Chemical Education, 70(3), 176. doi:10.1021/ed070p176

Sul, Y.-T., Johansson, C. B., Jeong, Y., & Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics, 23(5), 329-346. doi:10.1016/s1350-4533(01)00050-9

Yan, Z.  M., Guo, T.  W., Pan, H.  B., & Yu, J.  J. (2002). Influences of Electrolyzing Voltage on Chromatics of Anodized Titanium Dentures. MATERIALS TRANSACTIONS, 43(12), 3142-3145. doi:10.2320/matertrans.43.3142

Chen, C., Chen, J., Chao, C., & Say, W. C. (2005). Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing. Journal of Materials Science, 40(15), 4053-4059. doi:10.1007/s10853-005-2802-1

Diamanti, M. V., Del Curto, B., & Pedeferri, M. (2008). Interference colors of thin oxide layers on titanium. Color Research & Application, 33(3), 221-228. doi:10.1002/col.20403

Karambakhsh, A., Afshar, A., Ghahramani, S., & Malekinejad, P. (2011). Pure Commercial Titanium Color Anodizing and Corrosion Resistance. Journal of Materials Engineering and Performance, 20(9), 1690-1696. doi:10.1007/s11665-011-9860-0

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem