Cobb Harold M. (Ed.), Steel Products Manual: Stainless Steels, Iron & Steel Society, 1999.
Schweitzer P. A. , Corrosion Engineering Handbook: Fundamentals of Metallic Corrosion, CRC Press, Boca Ratón, FL., 2007.
Hakiki, N. B., Boudin, S., Rondot, B., & Da Cunha Belo, M. (1995). The electronic structure of passive films formed on stainless steels. Corrosion Science, 37(11), 1809-1822. doi:10.1016/0010-938x(95)00084-w
[+]
Cobb Harold M. (Ed.), Steel Products Manual: Stainless Steels, Iron & Steel Society, 1999.
Schweitzer P. A. , Corrosion Engineering Handbook: Fundamentals of Metallic Corrosion, CRC Press, Boca Ratón, FL., 2007.
Hakiki, N. B., Boudin, S., Rondot, B., & Da Cunha Belo, M. (1995). The electronic structure of passive films formed on stainless steels. Corrosion Science, 37(11), 1809-1822. doi:10.1016/0010-938x(95)00084-w
Wijesinghe, T. L. S. L., & Blackwood, D. J. (2008). Photocurrent and capacitance investigations into the nature of the passive films on austenitic stainless steels. Corrosion Science, 50(1), 23-34. doi:10.1016/j.corsci.2007.06.009
Hakiki, N. E. (1998). Semiconducting Properties of Passive Films Formed on Stainless Steels. Journal of The Electrochemical Society, 145(11), 3821. doi:10.1149/1.1838880
Olefjord, I. (1985). Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA. Journal of The Electrochemical Society, 132(12), 2854. doi:10.1149/1.2113683
Lothongkum, G., Chaikittisilp, S., & Lothongkum, A. . (2003). XPS investigation of surface films on high Cr-Ni ferritic and austenitic stainless steels. Applied Surface Science, 218(1-4), 203-210. doi:10.1016/s0169-4332(03)00600-7
Freire, L., Carmezim, M. J., Ferreira, M. G. S., & Montemor, M. F. (2010). The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study. Electrochimica Acta, 55(21), 6174-6181. doi:10.1016/j.electacta.2009.10.026
Roberge P. R. , Corrosion Engineering. Principles and Practice, 1st. ed., McGraw-Hill, New York, NY, 2008.
Wipf, D. O. (1994). Initiation and study of localized corrosion by scanning electrochemical microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 93, 251-261. doi:10.1016/0927-7757(94)02872-9
Casillas, N. (1994). Pitting Corrosion of Titanium. Journal of The Electrochemical Society, 141(3), 636. doi:10.1149/1.2054783
Basame, S. B., & White, H. S. (1995). Scanning electrochemical microscopy of native titanium oxide films. Mapping the potential dependence of spatially-localized electrochemical reactions. The Journal of Physical Chemistry, 99(44), 16430-16435. doi:10.1021/j100044a034
Still, J. W. (1997). Breakdown of the Iron Passive Layer by Use of the Scanning Electrochemical Microscope. Journal of The Electrochemical Society, 144(8), 2657. doi:10.1149/1.1837879
Zhu, Y. (1997). Scanning Electrochemical Microscopic Observation of a Precursor State to Pitting Corrosion of Stainless Steel. Journal of The Electrochemical Society, 144(3), L43. doi:10.1149/1.1837487
Basame, S. B., & White, H. S. (1998). Scanning Electrochemical Microscopy: Measurement of the Current Density at Microscopic Redox-Active Sites on Titanium. The Journal of Physical Chemistry B, 102(49), 9812-9819. doi:10.1021/jp982088x
Williams, D. E. (1998). Elucidation of a Trigger Mechanism for Pitting Corrosion of Stainless Steels Using Submicron Resolution Scanning Electrochemical and Photoelectrochemical Microscopy. Journal of The Electrochemical Society, 145(8), 2664. doi:10.1149/1.1838697
Lister, T. E., & Pinhero, P. J. (2002). Scanning Electrochemical Microscopy Study of Corrosion Dynamics on Type 304 Stainless Steel. Electrochemical and Solid-State Letters, 5(11), B33. doi:10.1149/1.1510621
Lister, T. E., & Pinhero, P. J. (2003). The effect of localized electric fields on the detection of dissolved sulfur species from Type 304 stainless steel using scanning electrochemical microscopy. Electrochimica Acta, 48(17), 2371-2378. doi:10.1016/s0013-4686(03)00228-7
González-Garcı́a, Y., Burstein, G. ., González, S., & Souto, R. . (2004). Imaging metastable pits on austenitic stainless steel in situ at the open-circuit corrosion potential. Electrochemistry Communications, 6(7), 637-642. doi:10.1016/j.elecom.2004.04.018
Souto, R. M., González-Garcı́a, Y., & González, S. (2005). In situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals. Corrosion Science, 47(12), 3312-3323. doi:10.1016/j.corsci.2005.07.005
Völker, E., Inchauspe, C. G., & Calvo, E. J. (2006). Scanning electrochemical microscopy measurement of ferrous ion fluxes during localized corrosion of steel. Electrochemistry Communications, 8(1), 179-183. doi:10.1016/j.elecom.2005.10.003
Gabrielli, C., Joiret, S., Keddam, M., Perrot, H., Portail, N., Rousseau, P., & Vivier, V. (2007). A SECM assisted EQCM study of iron pitting. Electrochimica Acta, 52(27), 7706-7714. doi:10.1016/j.electacta.2007.03.008
Yin, Y., Niu, L., Lu, M., Guo, W., & Chen, S. (2009). In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope. Applied Surface Science, 255(22), 9193-9199. doi:10.1016/j.apsusc.2009.07.003
Santana, J. J., González-Guzmán, J., Fernández-Mérida, L., González, S., & Souto, R. M. (2010). Visualization of local degradation processes in coated metals by means of scanning electrochemical microscopy in the redox competition mode. Electrochimica Acta, 55(15), 4488-4494. doi:10.1016/j.electacta.2010.02.091
González-García, Y., Santana, J. J., González-Guzmán, J., Izquierdo, J., González, S., & Souto, R. M. (2010). Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals. Progress in Organic Coatings, 69(2), 110-117. doi:10.1016/j.porgcoat.2010.04.006
Yuan, Y., Li, L., Wang, C., & Zhu, Y. (2010). Study of the effects of hydrogen on the pitting processes of X70 carbon steel with SECM. Electrochemistry Communications, 12(12), 1804-1807. doi:10.1016/j.elecom.2010.10.031
Aouina, N., Balbaud-Célérier, F., Huet, F., Joiret, S., Perrot, H., Rouillard, F., & Vivier, V. (2011). Single pit initiation on 316L austenitic stainless steel using scanning electrochemical microscopy. Electrochimica Acta, 56(24), 8589-8596. doi:10.1016/j.electacta.2011.07.044
Bard A. J. Mirkin M. V. (Eds.), Scanning Electrochemical Microscopy, 1st. ed., Marcel Dekker, New York, NJ, 2001.
Kaneko, M., & Isaacs, H. . (2000). Pitting of stainless steel in bromide, chloride and bromide/chloride solutions. Corrosion Science, 42(1), 67-78. doi:10.1016/s0010-938x(99)00056-6
Frankel, G. S. (1998). Pitting Corrosion of Metals. Journal of The Electrochemical Society, 145(6), 2186. doi:10.1149/1.1838615
Kaneko, M., & Isaacs, H. S. (2002). Effects of molybdenum on the pitting of ferritic- and austenitic-stainless steels in bromide and chloride solutions. Corrosion Science, 44(8), 1825-1834. doi:10.1016/s0010-938x(02)00003-3
Abd El Meguid, E. A., & Mahmoud, N. A. (2003). Inhibition of Bromide-Pitting Corrosion of Type 904L Stainless Steel. CORROSION, 59(2), 104-111. doi:10.5006/1.3277539
Anderko, A., & Young, R. D. (2000). Model for Corrosion of Carbon Steel in Lithium Bromide Absorption Refrigeration Systems. CORROSION, 56(5), 543-555. doi:10.5006/1.3280559
Chau, D. S., Wood, B. D., Berman, N. S., & Kim, K. J. (1993). Solubility of oxygen in aqueous lithium bromide using electrochemical technique. International Communications in Heat and Mass Transfer, 20(5), 643-652. doi:10.1016/0735-1933(93)90076-8
Macdonald, D. D. (1992). The Point Defect Model for the Passive State. Journal of The Electrochemical Society, 139(12), 3434. doi:10.1149/1.2069096
Paola, A. D. (1989). Semiconducting properties of passive films on stainless steels. Electrochimica Acta, 34(2), 203-210. doi:10.1016/0013-4686(89)87086-0
Hakiki, N. E., Montemor, M. F., Ferreira, M. G. S., & da Cunha Belo, M. (2000). Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corrosion Science, 42(4), 687-702. doi:10.1016/s0010-938x(99)00082-7
Carmezim, M. J., Simões, A. M., Figueiredo, M. O., & Da Cunha Belo, M. (2002). Electrochemical behaviour of thermally treated Cr-oxide films deposited on stainless steel. Corrosion Science, 44(3), 451-465. doi:10.1016/s0010-938x(01)00076-2
Sharma S. K. , Green Corrosion Chemistry and Engineering: Opportunities and Challenges, Wiley-VCH Verlag GmbH & Co., First Edition, Germany, 2012.
Venkatraman, M. S., Cole, I. S., & Emmanuel, B. (2011). Corrosion under a porous layer: A porous electrode model and its implications for self-repair. Electrochimica Acta, 56(24), 8192-8203. doi:10.1016/j.electacta.2011.06.020
Thomas, S., Cole, I. S., Sridhar, M., & Birbilis, N. (2013). Revisiting zinc passivation in alkaline solutions. Electrochimica Acta, 97, 192-201. doi:10.1016/j.electacta.2013.03.008
Gao, S., Dong, C., Luo, H., Xiao, K., Pan, X., & Li, X. (2013). Scanning electrochemical microscopy study on the electrochemical behavior of CrN film formed on 304 stainless steel by magnetron sputtering. Electrochimica Acta, 114, 233-241. doi:10.1016/j.electacta.2013.10.009
Lu, G., Cooper, J. S., & McGinn, P. J. (2007). SECM imaging of electrocatalytic activity for oxygen reduction reaction on thin film materials. Electrochimica Acta, 52(16), 5172-5181. doi:10.1016/j.electacta.2007.02.022
Song C. Zhang J. , Electrocatalytic Oxygen Reduction Reaction, in: J. Zhang (Ed.), PEM Fuel Cell Electrocatalysts and Catalyst Layers, Ch. 2, Springer, London, 2008, p. 89.
Macdonald, D. D. (1999). Passivity–the key to our metals-based civilization. Pure and Applied Chemistry, 71(6), 951-978. doi:10.1351/pac199971060951
Macdonald, D. D., Rifaie, M. A., & Engelhardt, G. R. (2001). New Rate Laws for the Growth and Reduction of Passive Films. Journal of The Electrochemical Society, 148(9), B343. doi:10.1149/1.1385818
Macdonald, D. D. (2006). On the Existence of Our Metals-Based Civilization. Journal of The Electrochemical Society, 153(7), B213. doi:10.1149/1.2195877
Marconnet, C., Wouters, Y., Miserque, F., Dagbert, C., Petit, J.-P., Galerie, A., & Féron, D. (2008). Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution. Electrochimica Acta, 54(1), 123-132. doi:10.1016/j.electacta.2008.02.070
Rhode, S., Kain, V., Raja, V. S., & Abraham, G. J. (2013). Factors affecting corrosion behavior of inclusion containing stainless steels: A scanning electrochemical microscopic study. Materials Characterization, 77, 109-115. doi:10.1016/j.matchar.2013.01.006
Newman, R. C., & Franz, E. M. (1984). Growth and Repassivation of Single Corrosion Pits in Stainless Steel. CORROSION, 40(7), 325-330. doi:10.5006/1.3593930
Simões, A. M., Bastos, A. C., Ferreira, M. G., González-García, Y., González, S., & Souto, R. M. (2007). Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell. Corrosion Science, 49(2), 726-739. doi:10.1016/j.corsci.2006.04.021
Beck, T. R. (1979). Occurrence of Salt Films during Initiation and Growth of Corrosion Pits. Journal of The Electrochemical Society, 126(10), 1662. doi:10.1149/1.2128772
Alkire, R. C., & Wong, K. P. (1988). The corrosion of single pits on stainless steel in acidic chloride solution. Corrosion Science, 28(4), 411-421. doi:10.1016/0010-938x(88)90060-1
Bastos, A. C., Simões, A. M., González, S., González-García, Y., & Souto, R. M. (2004). Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electrochemical microscope. Electrochemistry Communications, 6(11), 1212-1215. doi:10.1016/j.elecom.2004.09.022
Böhni H. , Localized Corrosion of Passive Metals, in: Winston Revie R. (Ed.), Uhlig's Corrosion Handbook, 2nd ed., Ch. 10, Wiley Interscience, New York, 2000.
Leiva-García, R., García-Antón, J., & Muñoz-Portero, M. J. (2010). Contribution to the elucidation of corrosion initiation through confocal laser scanning microscopy (CLSM). Corrosion Science, 52(6), 2133-2142. doi:10.1016/j.corsci.2010.02.034
Laycock, N. J., & Newman, R. C. (1997). Localised dissolution kinetics, salt films and pitting potentials. Corrosion Science, 39(10-11), 1771-1790. doi:10.1016/s0010-938x(97)00049-8
Moayed, M. H., & Newman, R. C. (2006). The Relationship Between Pit Chemistry and Pit Geometry Near the Critical Pitting Temperature. Journal of The Electrochemical Society, 153(8), B330. doi:10.1149/1.2210670
Ernst, P., & Newman, R. . (2002). Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics. Corrosion Science, 44(5), 927-941. doi:10.1016/s0010-938x(01)00133-0
Ernst, P., Laycock, N. J., Moayed, M. H., & Newman, R. C. (1997). The mechanism of lacy cover formation in pitting. Corrosion Science, 39(6), 1133-1136. doi:10.1016/s0010-938x(97)00043-7
Sun, D., Jiang, Y., Tang, Y., Xiang, Q., Zhong, C., Liao, J., & Li, J. (2009). Pitting corrosion behavior of stainless steel in ultrasonic cell. Electrochimica Acta, 54(5), 1558-1563. doi:10.1016/j.electacta.2008.09.056
Ren, J., & Zuo, Y. (2005). The growth mechanism of pits in NaCl solution under anodic films on aluminum. Surface and Coatings Technology, 191(2-3), 311-316. doi:10.1016/j.surfcoat.2004.04.054
[-]