- -

On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods

Show full item record

González Estrada, OA.; Ródenas García, JJ.; Bordas, SPA.; Duflot, M.; Kerfriden, P.; Giner Maravilla, E. (2012). On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Engineering Computations. 29(8):814-841. doi:10.1108/02644401211271609

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60735

Files in this item

Item Metadata

Title: On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
Purpose The purpose of this paper is to assess the effect of the statical admissibility of the recovered solution and the ability of the recovered solution to represent the singular solution; also the accuracy, local and ...[+]
Subjects: Finite element analysis , Error analysis , Extended finite element method , Error estimation , Linear elastic fracture mechanics , Statical admissibility , Extended recovery
Copyrigths: Reserva de todos los derechos
Source:
Engineering Computations. (issn: 0264-4401 )
DOI: 10.1108/02644401211271609
Publisher:
Emerald
Publisher version: http://dx.doi.org/10.1108/02644401211271609
Project ID: info:eu-repo/grantAgreement/EC/FP7/279578/EU
Description: "This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here (please insert the web address here). Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited."
Thanks:
This work has been carried out within the framework of the research projects DPI2007-66773-C02-01, DPI2010-20542 and DPI2010-20990 of the Ministerio de Ciencia e Innovacion (Spain). Funding from Feder, Universitat Politecnica ...[+]
Type: Artículo

References

Babuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-5

BABUŠKA, I., STROUBOULIS, T., & UPADHYAY, C. S. (1997). A MODEL STUDY OF THE QUALITY OFA POSTERIORI ERROR ESTIMATORS FOR FINITE ELEMENT SOLUTIONS OF LINEAR ELLIPTIC PROBLEMS, WITH PARTICULAR REFERENCE TO THE BEHAVIOR NEAR THE BOUNDARY. International Journal for Numerical Methods in Engineering, 40(14), 2521-2577. doi:10.1002/(sici)1097-0207(19970730)40:14<2521::aid-nme181>3.0.co;2-a

Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., & Copps, K. (1994). Validation ofa posteriori error estimators by numerical approach. International Journal for Numerical Methods in Engineering, 37(7), 1073-1123. doi:10.1002/nme.1620370702 [+]
Babuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-5

BABUŠKA, I., STROUBOULIS, T., & UPADHYAY, C. S. (1997). A MODEL STUDY OF THE QUALITY OFA POSTERIORI ERROR ESTIMATORS FOR FINITE ELEMENT SOLUTIONS OF LINEAR ELLIPTIC PROBLEMS, WITH PARTICULAR REFERENCE TO THE BEHAVIOR NEAR THE BOUNDARY. International Journal for Numerical Methods in Engineering, 40(14), 2521-2577. doi:10.1002/(sici)1097-0207(19970730)40:14<2521::aid-nme181>3.0.co;2-a

Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., & Copps, K. (1994). Validation ofa posteriori error estimators by numerical approach. International Journal for Numerical Methods in Engineering, 37(7), 1073-1123. doi:10.1002/nme.1620370702

Banks-Sills, L. (1991). Application of the Finite Element Method to Linear Elastic Fracture Mechanics. Applied Mechanics Reviews, 44(10), 447-461. doi:10.1115/1.3119488

Béchet, E., Minnebo, H., Moës, N., & Burgardt, B. (2005). Improved implementation and robustness study of the X-FEM for stress analysis around cracks. International Journal for Numerical Methods in Engineering, 64(8), 1033-1056. doi:10.1002/nme.1386

Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601-620. doi:10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., & Snm Liu, W. K. (1996). Smoothing and accelerated computations in the element free Galerkin method. Journal of Computational and Applied Mathematics, 74(1-2), 111-126. doi:10.1016/0377-0427(96)00020-9

Bordas, S., & Duflot, M. (2007). Derivative recovery and a posteriori error estimate for extended finite elements. Computer Methods in Applied Mechanics and Engineering, 196(35-36), 3381-3399. doi:10.1016/j.cma.2007.03.011

Bordas, S., & Moran, B. (2006). Enriched finite elements and level sets for damage tolerance assessment of complex structures. Engineering Fracture Mechanics, 73(9), 1176-1201. doi:10.1016/j.engfracmech.2006.01.006

Bordas, S., Duflot, M., & Le, P. (2007). A simple error estimator for extended finite elements. Communications in Numerical Methods in Engineering, 24(11), 961-971. doi:10.1002/cnm.1001

Chessa, J., Wang, H., & Belytschko, T. (2003). On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering, 57(7), 1015-1038. doi:10.1002/nme.777

Díez, P., Parés, N., & Huerta, A. (2004). Accurate upper and lower error bounds by solving flux-free local problems in «stars». Revue Européenne des Éléments Finis, 13(5-7), 497-507. doi:10.3166/reef.13.497-507

Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837

Duflot, M. (2007). A study of the representation of cracks with level sets. International Journal for Numerical Methods in Engineering, 70(11), 1261-1302. doi:10.1002/nme.1915

Duflot, M., & Bordas, S. (2008). A posteriorierror estimation for extended finite elements by an extended global recovery. International Journal for Numerical Methods in Engineering, 76(8), 1123-1138. doi:10.1002/nme.2332

Fries, T. (2008). A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 75(5), 503-532. doi:10.1002/nme.2259

Giner, E., Fuenmayor, F. J., Baeza, L., & Tarancón, J. E. (2005). Error estimation for the finite element evaluation of and in mixed-mode linear elastic fracture mechanics. Finite Elements in Analysis and Design, 41(11-12), 1079-1104. doi:10.1016/j.finel.2004.11.004

Gracie, R., Wang, H., & Belytschko, T. (2008). Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. International Journal for Numerical Methods in Engineering, 74(11), 1645-1669. doi:10.1002/nme.2217

Li, F. Z., Shih, C. F., & Needleman, A. (1985). A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics, 21(2), 405-421. doi:10.1016/0013-7944(85)90029-3

Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0

Mo�s, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Natarajan, S., Mahapatra, D.R. and Bordas, S.P.A. (2010), “Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework”,International Journal for Numerical Methods in Engineering, Vol. 83 No. 3, pp. 269‐94.

Panetier, J., Ladevèze, P. and Chamoin, L. (2010), “Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM”,International Journal for Numerical Methods in Engineering, Vol. 81 No. 6, pp. 671‐700.

Pannachet, T., Sluys, L. J., & Askes, H. (2009). Error estimation and adaptivity for discontinuous failure. International Journal for Numerical Methods in Engineering, 78(5), 528-563. doi:10.1002/nme.2495

Pereira, O. J. B. A., de Almeida, J. P. M., & Maunder, E. A. W. (1999). Adaptive methods for hybrid equilibrium finite element models. Computer Methods in Applied Mechanics and Engineering, 176(1-4), 19-39. doi:10.1016/s0045-7825(98)00328-4

Ródenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010

Ródenas, J. J., González-Estrada, O. A., Tarancón, J. E., & Fuenmayor, F. J. (2008). A recovery-type error estimator for the extended finite element method based onsingular+smoothstress field splitting. International Journal for Numerical Methods in Engineering, 76(4), 545-571. doi:10.1002/nme.2313

Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903

Shih, C. and Asaro, R. (1988), “Elastic‐plastic analysis of cracks on bimaterial interfaces: part I – small scale yielding”,Journal of Applied Mechanics, Vol. 8, pp. 537‐45.

Stolarska, M., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8), 943-960. doi:10.1002/nme.201

Strouboulis, T., Copps, K., & Babuška, I. (2001). The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. doi:10.1016/s0045-7825(01)00188-8

Strouboulis, T., Zhang, L., Wang, D., & Babuška, I. (2006). A posteriori error estimation for generalized finite element methods. Computer Methods in Applied Mechanics and Engineering, 195(9-12), 852-879. doi:10.1016/j.cma.2005.03.004

Tabbara, M., Blacker, T., & Belytschko, T. (1994). Finite element derivative recovery by moving least square interpolants. Computer Methods in Applied Mechanics and Engineering, 117(1-2), 211-223. doi:10.1016/0045-7825(94)90084-1

Tarancón, J. E., Vercher, A., Giner, E., & Fuenmayor, F. J. (2009). Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 77(1), 126-148. doi:10.1002/nme.2402

Ventura, G. (2006). On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method. International Journal for Numerical Methods in Engineering, 66(5), 761-795. doi:10.1002/nme.1570

Wyart, E., Coulon, D., Duflot, M., Pardoen, T., Remacle, J.-F., & Lani, F. (2007). A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures. International Journal for Numerical Methods in Engineering, 72(7), 757-779. doi:10.1002/nme.2029

Xiao, Q. Z., & Karihaloo, B. L. (2006). Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. International Journal for Numerical Methods in Engineering, 66(9), 1378-1410. doi:10.1002/nme.1601

Yau, J. F., Wang, S. S., & Corten, H. T. (1980). A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity. Journal of Applied Mechanics, 47(2), 335-341. doi:10.1115/1.3153665

Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206

Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702

Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33(7), 1365-1382. doi:10.1002/nme.1620330703

[-]

This item appears in the following Collection(s)

Show full item record