Babuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-5
BABUŠKA, I., STROUBOULIS, T., & UPADHYAY, C. S. (1997). A MODEL STUDY OF THE QUALITY OFA POSTERIORI ERROR ESTIMATORS FOR FINITE ELEMENT SOLUTIONS OF LINEAR ELLIPTIC PROBLEMS, WITH PARTICULAR REFERENCE TO THE BEHAVIOR NEAR THE BOUNDARY. International Journal for Numerical Methods in Engineering, 40(14), 2521-2577. doi:10.1002/(sici)1097-0207(19970730)40:14<2521::aid-nme181>3.0.co;2-a
Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., & Copps, K. (1994). Validation ofa posteriori error estimators by numerical approach. International Journal for Numerical Methods in Engineering, 37(7), 1073-1123. doi:10.1002/nme.1620370702
[+]
Babuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-5
BABUŠKA, I., STROUBOULIS, T., & UPADHYAY, C. S. (1997). A MODEL STUDY OF THE QUALITY OFA POSTERIORI ERROR ESTIMATORS FOR FINITE ELEMENT SOLUTIONS OF LINEAR ELLIPTIC PROBLEMS, WITH PARTICULAR REFERENCE TO THE BEHAVIOR NEAR THE BOUNDARY. International Journal for Numerical Methods in Engineering, 40(14), 2521-2577. doi:10.1002/(sici)1097-0207(19970730)40:14<2521::aid-nme181>3.0.co;2-a
Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., & Copps, K. (1994). Validation ofa posteriori error estimators by numerical approach. International Journal for Numerical Methods in Engineering, 37(7), 1073-1123. doi:10.1002/nme.1620370702
Banks-Sills, L. (1991). Application of the Finite Element Method to Linear Elastic Fracture Mechanics. Applied Mechanics Reviews, 44(10), 447-461. doi:10.1115/1.3119488
Béchet, E., Minnebo, H., Moës, N., & Burgardt, B. (2005). Improved implementation and robustness study of the X-FEM for stress analysis around cracks. International Journal for Numerical Methods in Engineering, 64(8), 1033-1056. doi:10.1002/nme.1386
Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601-620. doi:10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s
Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., & Snm Liu, W. K. (1996). Smoothing and accelerated computations in the element free Galerkin method. Journal of Computational and Applied Mathematics, 74(1-2), 111-126. doi:10.1016/0377-0427(96)00020-9
Bordas, S., & Duflot, M. (2007). Derivative recovery and a posteriori error estimate for extended finite elements. Computer Methods in Applied Mechanics and Engineering, 196(35-36), 3381-3399. doi:10.1016/j.cma.2007.03.011
Bordas, S., & Moran, B. (2006). Enriched finite elements and level sets for damage tolerance assessment of complex structures. Engineering Fracture Mechanics, 73(9), 1176-1201. doi:10.1016/j.engfracmech.2006.01.006
Bordas, S., Duflot, M., & Le, P. (2007). A simple error estimator for extended finite elements. Communications in Numerical Methods in Engineering, 24(11), 961-971. doi:10.1002/cnm.1001
Chessa, J., Wang, H., & Belytschko, T. (2003). On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering, 57(7), 1015-1038. doi:10.1002/nme.777
Díez, P., Parés, N., & Huerta, A. (2004). Accurate upper and lower error bounds by solving flux-free local problems in «stars». Revue Européenne des Éléments Finis, 13(5-7), 497-507. doi:10.3166/reef.13.497-507
Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837
Duflot, M. (2007). A study of the representation of cracks with level sets. International Journal for Numerical Methods in Engineering, 70(11), 1261-1302. doi:10.1002/nme.1915
Duflot, M., & Bordas, S. (2008). A posteriorierror estimation for extended finite elements by an extended global recovery. International Journal for Numerical Methods in Engineering, 76(8), 1123-1138. doi:10.1002/nme.2332
Fries, T. (2008). A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 75(5), 503-532. doi:10.1002/nme.2259
Giner, E., Fuenmayor, F. J., Baeza, L., & Tarancón, J. E. (2005). Error estimation for the finite element evaluation of and in mixed-mode linear elastic fracture mechanics. Finite Elements in Analysis and Design, 41(11-12), 1079-1104. doi:10.1016/j.finel.2004.11.004
Gracie, R., Wang, H., & Belytschko, T. (2008). Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. International Journal for Numerical Methods in Engineering, 74(11), 1645-1669. doi:10.1002/nme.2217
Li, F. Z., Shih, C. F., & Needleman, A. (1985). A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics, 21(2), 405-421. doi:10.1016/0013-7944(85)90029-3
Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0
Mo�s, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j
Natarajan, S., Mahapatra, D.R. and Bordas, S.P.A. (2010), “Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework”,International Journal for Numerical Methods in Engineering, Vol. 83 No. 3, pp. 269‐94.
Panetier, J., Ladevèze, P. and Chamoin, L. (2010), “Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM”,International Journal for Numerical Methods in Engineering, Vol. 81 No. 6, pp. 671‐700.
Pannachet, T., Sluys, L. J., & Askes, H. (2009). Error estimation and adaptivity for discontinuous failure. International Journal for Numerical Methods in Engineering, 78(5), 528-563. doi:10.1002/nme.2495
Pereira, O. J. B. A., de Almeida, J. P. M., & Maunder, E. A. W. (1999). Adaptive methods for hybrid equilibrium finite element models. Computer Methods in Applied Mechanics and Engineering, 176(1-4), 19-39. doi:10.1016/s0045-7825(98)00328-4
Ródenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010
Ródenas, J. J., González-Estrada, O. A., Tarancón, J. E., & Fuenmayor, F. J. (2008). A recovery-type error estimator for the extended finite element method based onsingular+smoothstress field splitting. International Journal for Numerical Methods in Engineering, 76(4), 545-571. doi:10.1002/nme.2313
Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903
Shih, C. and Asaro, R. (1988), “Elastic‐plastic analysis of cracks on bimaterial interfaces: part I – small scale yielding”,Journal of Applied Mechanics, Vol. 8, pp. 537‐45.
Stolarska, M., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8), 943-960. doi:10.1002/nme.201
Strouboulis, T., Copps, K., & Babuška, I. (2001). The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. doi:10.1016/s0045-7825(01)00188-8
Strouboulis, T., Zhang, L., Wang, D., & Babuška, I. (2006). A posteriori error estimation for generalized finite element methods. Computer Methods in Applied Mechanics and Engineering, 195(9-12), 852-879. doi:10.1016/j.cma.2005.03.004
Tabbara, M., Blacker, T., & Belytschko, T. (1994). Finite element derivative recovery by moving least square interpolants. Computer Methods in Applied Mechanics and Engineering, 117(1-2), 211-223. doi:10.1016/0045-7825(94)90084-1
Tarancón, J. E., Vercher, A., Giner, E., & Fuenmayor, F. J. (2009). Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 77(1), 126-148. doi:10.1002/nme.2402
Ventura, G. (2006). On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method. International Journal for Numerical Methods in Engineering, 66(5), 761-795. doi:10.1002/nme.1570
Wyart, E., Coulon, D., Duflot, M., Pardoen, T., Remacle, J.-F., & Lani, F. (2007). A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures. International Journal for Numerical Methods in Engineering, 72(7), 757-779. doi:10.1002/nme.2029
Xiao, Q. Z., & Karihaloo, B. L. (2006). Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. International Journal for Numerical Methods in Engineering, 66(9), 1378-1410. doi:10.1002/nme.1601
Yau, J. F., Wang, S. S., & Corten, H. T. (1980). A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity. Journal of Applied Mechanics, 47(2), 335-341. doi:10.1115/1.3153665
Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206
Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702
Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33(7), 1365-1382. doi:10.1002/nme.1620330703
[-]