- -

On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Estrada, Octavio Andrés es_ES
dc.contributor.author Ródenas, J.J. es_ES
dc.contributor.author Bordas, Stéphane Pierre Alain es_ES
dc.contributor.author Duflot, Marc es_ES
dc.contributor.author Kerfriden, Pierre es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.date.accessioned 2016-02-09T15:02:54Z
dc.date.available 2016-02-09T15:02:54Z
dc.date.issued 2012
dc.identifier.issn 0264-4401
dc.identifier.uri http://hdl.handle.net/10251/60735
dc.description "This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here (please insert the web address here). Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited." es_ES
dc.description.abstract Purpose The purpose of this paper is to assess the effect of the statical admissibility of the recovered solution and the ability of the recovered solution to represent the singular solution; also the accuracy, local and global effectivity of recovery-based error estimators for enriched finite element methods (e.g. the extended finite element method, XFEM). Design/methodology/approach The authors study the performance of two recovery techniques. The first is a recently developed superconvergent patch recovery procedure with equilibration and enrichment (SPR-CX). The second is known as the extended moving least squares recovery (XMLS), which enriches the recovered solutions but does not enforce equilibrium constraints. Both are extended recovery techniques as the polynomial basis used in the recovery process is enriched with singular terms for a better description of the singular nature of the solution. Findings Numerical results comparing the convergence and the effectivity index of both techniques with those obtained without the enrichment enhancement clearly show the need for the use of extended recovery techniques in Zienkiewicz-Zhu type error estimators for this class of problems. The results also reveal significant improvements in the effectivities yielded by statically admissible recovered solutions. es_ES
dc.description.sponsorship Stéphane Bordas would like to thank the Royal Academy of Engineering and of the Leverhulme Trust for supporting his Senior Research Fellowship entitled “Towards the next generation surgical simulators” as well as the EPSRC for support under grant EP/G042705/1 Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method.This work has been carried out within the framework of the research projects DPI2007‐66773‐C02‐01, DPI2010‐20542 and DPI2010‐20990 of the Ministerio de Ciencia e Innovacion (Spain). Funding from Feder, Universitat Politecnica de Valencia and Generalitat Valenciana is also acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Emerald es_ES
dc.relation.ispartof Engineering Computations es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Finite element analysis es_ES
dc.subject Error analysis es_ES
dc.subject Extended finite element method es_ES
dc.subject Error estimation es_ES
dc.subject Linear elastic fracture mechanics es_ES
dc.subject Statical admissibility es_ES
dc.subject Extended recovery es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1108/02644401211271609
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2007-66773-C02-01/ES/TECNICAS EFICACES DE ANALISIS CON CONTROL DE ERROR PARA CONJUNTOS DE CONFIGURACIONES EN OPTIMIZACION DE FORMA CON ALGORITMOS EVOLUTIVOS/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/279578/EU/Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/RCUK/EPSRC/EP/G042705/1/GB/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20542/ES/DESARROLLO DE HERRAMIENTA 3D COMPUTACIONALMENTE EFICAZ Y DE ALTA PRECISION PARA ANALISIS Y DISEÑO ESTRUCTURAL BASADA EN MALLADOS CARTESIANOS DE EF INDEPENDIENTES DE GEOMETRIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20990/ES/APLICACION DEL METODO DE ELEMENTOS FINITOS EXTENDIDO Y MODELOS DE ZONA COHESIVA AL MODELADO MICROESTRUCTURAL DEL DAÑO EN HUESO CORTICAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation González Estrada, OA.; Ródenas, J.; Bordas, SPA.; Duflot, M.; Kerfriden, P.; Giner Maravilla, E. (2012). On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Engineering Computations. 29(8):814-841. https://doi.org/10.1108/02644401211271609 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1108/02644401211271609 es_ES
dc.description.upvformatpinicio 814 es_ES
dc.description.upvformatpfin 841 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 237728 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Babuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-5 es_ES
dc.description.references BABUŠKA, I., STROUBOULIS, T., & UPADHYAY, C. S. (1997). A MODEL STUDY OF THE QUALITY OFA POSTERIORI ERROR ESTIMATORS FOR FINITE ELEMENT SOLUTIONS OF LINEAR ELLIPTIC PROBLEMS, WITH PARTICULAR REFERENCE TO THE BEHAVIOR NEAR THE BOUNDARY. International Journal for Numerical Methods in Engineering, 40(14), 2521-2577. doi:10.1002/(sici)1097-0207(19970730)40:14<2521::aid-nme181>3.0.co;2-a es_ES
dc.description.references Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., & Copps, K. (1994). Validation ofa posteriori error estimators by numerical approach. International Journal for Numerical Methods in Engineering, 37(7), 1073-1123. doi:10.1002/nme.1620370702 es_ES
dc.description.references Banks-Sills, L. (1991). Application of the Finite Element Method to Linear Elastic Fracture Mechanics. Applied Mechanics Reviews, 44(10), 447-461. doi:10.1115/1.3119488 es_ES
dc.description.references Béchet, E., Minnebo, H., Moës, N., & Burgardt, B. (2005). Improved implementation and robustness study of the X-FEM for stress analysis around cracks. International Journal for Numerical Methods in Engineering, 64(8), 1033-1056. doi:10.1002/nme.1386 es_ES
dc.description.references Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601-620. doi:10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s es_ES
dc.description.references Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., & Snm Liu, W. K. (1996). Smoothing and accelerated computations in the element free Galerkin method. Journal of Computational and Applied Mathematics, 74(1-2), 111-126. doi:10.1016/0377-0427(96)00020-9 es_ES
dc.description.references Bordas, S., & Duflot, M. (2007). Derivative recovery and a posteriori error estimate for extended finite elements. Computer Methods in Applied Mechanics and Engineering, 196(35-36), 3381-3399. doi:10.1016/j.cma.2007.03.011 es_ES
dc.description.references Bordas, S., & Moran, B. (2006). Enriched finite elements and level sets for damage tolerance assessment of complex structures. Engineering Fracture Mechanics, 73(9), 1176-1201. doi:10.1016/j.engfracmech.2006.01.006 es_ES
dc.description.references Bordas, S., Duflot, M., & Le, P. (2007). A simple error estimator for extended finite elements. Communications in Numerical Methods in Engineering, 24(11), 961-971. doi:10.1002/cnm.1001 es_ES
dc.description.references Chessa, J., Wang, H., & Belytschko, T. (2003). On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering, 57(7), 1015-1038. doi:10.1002/nme.777 es_ES
dc.description.references Díez, P., Parés, N., & Huerta, A. (2004). Accurate upper and lower error bounds by solving flux-free local problems in «stars». Revue Européenne des Éléments Finis, 13(5-7), 497-507. doi:10.3166/reef.13.497-507 es_ES
dc.description.references Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837 es_ES
dc.description.references Duflot, M. (2007). A study of the representation of cracks with level sets. International Journal for Numerical Methods in Engineering, 70(11), 1261-1302. doi:10.1002/nme.1915 es_ES
dc.description.references Duflot, M., & Bordas, S. (2008). A posteriorierror estimation for extended finite elements by an extended global recovery. International Journal for Numerical Methods in Engineering, 76(8), 1123-1138. doi:10.1002/nme.2332 es_ES
dc.description.references Fries, T. (2008). A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 75(5), 503-532. doi:10.1002/nme.2259 es_ES
dc.description.references Giner, E., Fuenmayor, F. J., Baeza, L., & Tarancón, J. E. (2005). Error estimation for the finite element evaluation of and in mixed-mode linear elastic fracture mechanics. Finite Elements in Analysis and Design, 41(11-12), 1079-1104. doi:10.1016/j.finel.2004.11.004 es_ES
dc.description.references Gracie, R., Wang, H., & Belytschko, T. (2008). Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. International Journal for Numerical Methods in Engineering, 74(11), 1645-1669. doi:10.1002/nme.2217 es_ES
dc.description.references Li, F. Z., Shih, C. F., & Needleman, A. (1985). A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics, 21(2), 405-421. doi:10.1016/0013-7944(85)90029-3 es_ES
dc.description.references Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0 es_ES
dc.description.references Mo�s, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j es_ES
dc.description.references Natarajan, S., Mahapatra, D.R. and Bordas, S.P.A. (2010), “Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework”,International Journal for Numerical Methods in Engineering, Vol. 83 No. 3, pp. 269‐94. es_ES
dc.description.references Panetier, J., Ladevèze, P. and Chamoin, L. (2010), “Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM”,International Journal for Numerical Methods in Engineering, Vol. 81 No. 6, pp. 671‐700. es_ES
dc.description.references Pannachet, T., Sluys, L. J., & Askes, H. (2009). Error estimation and adaptivity for discontinuous failure. International Journal for Numerical Methods in Engineering, 78(5), 528-563. doi:10.1002/nme.2495 es_ES
dc.description.references Pereira, O. J. B. A., de Almeida, J. P. M., & Maunder, E. A. W. (1999). Adaptive methods for hybrid equilibrium finite element models. Computer Methods in Applied Mechanics and Engineering, 176(1-4), 19-39. doi:10.1016/s0045-7825(98)00328-4 es_ES
dc.description.references Ródenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010 es_ES
dc.description.references Ródenas, J. J., González-Estrada, O. A., Tarancón, J. E., & Fuenmayor, F. J. (2008). A recovery-type error estimator for the extended finite element method based onsingular+smoothstress field splitting. International Journal for Numerical Methods in Engineering, 76(4), 545-571. doi:10.1002/nme.2313 es_ES
dc.description.references Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903 es_ES
dc.description.references Shih, C. and Asaro, R. (1988), “Elastic‐plastic analysis of cracks on bimaterial interfaces: part I – small scale yielding”,Journal of Applied Mechanics, Vol. 8, pp. 537‐45. es_ES
dc.description.references Stolarska, M., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8), 943-960. doi:10.1002/nme.201 es_ES
dc.description.references Strouboulis, T., Copps, K., & Babuška, I. (2001). The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. doi:10.1016/s0045-7825(01)00188-8 es_ES
dc.description.references Strouboulis, T., Zhang, L., Wang, D., & Babuška, I. (2006). A posteriori error estimation for generalized finite element methods. Computer Methods in Applied Mechanics and Engineering, 195(9-12), 852-879. doi:10.1016/j.cma.2005.03.004 es_ES
dc.description.references Tabbara, M., Blacker, T., & Belytschko, T. (1994). Finite element derivative recovery by moving least square interpolants. Computer Methods in Applied Mechanics and Engineering, 117(1-2), 211-223. doi:10.1016/0045-7825(94)90084-1 es_ES
dc.description.references Tarancón, J. E., Vercher, A., Giner, E., & Fuenmayor, F. J. (2009). Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 77(1), 126-148. doi:10.1002/nme.2402 es_ES
dc.description.references Ventura, G. (2006). On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method. International Journal for Numerical Methods in Engineering, 66(5), 761-795. doi:10.1002/nme.1570 es_ES
dc.description.references Wyart, E., Coulon, D., Duflot, M., Pardoen, T., Remacle, J.-F., & Lani, F. (2007). A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures. International Journal for Numerical Methods in Engineering, 72(7), 757-779. doi:10.1002/nme.2029 es_ES
dc.description.references Xiao, Q. Z., & Karihaloo, B. L. (2006). Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. International Journal for Numerical Methods in Engineering, 66(9), 1378-1410. doi:10.1002/nme.1601 es_ES
dc.description.references Yau, J. F., Wang, S. S., & Corten, H. T. (1980). A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity. Journal of Applied Mechanics, 47(2), 335-341. doi:10.1115/1.3153665 es_ES
dc.description.references Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206 es_ES
dc.description.references Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702 es_ES
dc.description.references Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33(7), 1365-1382. doi:10.1002/nme.1620330703 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem