Mostrar el registro sencillo del ítem
dc.contributor.author | González Estrada, Octavio Andrés | es_ES |
dc.contributor.author | Ródenas, J.J. | es_ES |
dc.contributor.author | Bordas, Stéphane Pierre Alain | es_ES |
dc.contributor.author | Duflot, Marc | es_ES |
dc.contributor.author | Kerfriden, Pierre | es_ES |
dc.contributor.author | Giner Maravilla, Eugenio | es_ES |
dc.date.accessioned | 2016-02-09T15:02:54Z | |
dc.date.available | 2016-02-09T15:02:54Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0264-4401 | |
dc.identifier.uri | http://hdl.handle.net/10251/60735 | |
dc.description | "This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here (please insert the web address here). Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited." | es_ES |
dc.description.abstract | Purpose The purpose of this paper is to assess the effect of the statical admissibility of the recovered solution and the ability of the recovered solution to represent the singular solution; also the accuracy, local and global effectivity of recovery-based error estimators for enriched finite element methods (e.g. the extended finite element method, XFEM). Design/methodology/approach The authors study the performance of two recovery techniques. The first is a recently developed superconvergent patch recovery procedure with equilibration and enrichment (SPR-CX). The second is known as the extended moving least squares recovery (XMLS), which enriches the recovered solutions but does not enforce equilibrium constraints. Both are extended recovery techniques as the polynomial basis used in the recovery process is enriched with singular terms for a better description of the singular nature of the solution. Findings Numerical results comparing the convergence and the effectivity index of both techniques with those obtained without the enrichment enhancement clearly show the need for the use of extended recovery techniques in Zienkiewicz-Zhu type error estimators for this class of problems. The results also reveal significant improvements in the effectivities yielded by statically admissible recovered solutions. | es_ES |
dc.description.sponsorship | Stéphane Bordas would like to thank the Royal Academy of Engineering and of the Leverhulme Trust for supporting his Senior Research Fellowship entitled “Towards the next generation surgical simulators” as well as the EPSRC for support under grant EP/G042705/1 Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method.This work has been carried out within the framework of the research projects DPI2007‐66773‐C02‐01, DPI2010‐20542 and DPI2010‐20990 of the Ministerio de Ciencia e Innovacion (Spain). Funding from Feder, Universitat Politecnica de Valencia and Generalitat Valenciana is also acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Emerald | es_ES |
dc.relation.ispartof | Engineering Computations | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Finite element analysis | es_ES |
dc.subject | Error analysis | es_ES |
dc.subject | Extended finite element method | es_ES |
dc.subject | Error estimation | es_ES |
dc.subject | Linear elastic fracture mechanics | es_ES |
dc.subject | Statical admissibility | es_ES |
dc.subject | Extended recovery | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1108/02644401211271609 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//DPI2007-66773-C02-01/ES/TECNICAS EFICACES DE ANALISIS CON CONTROL DE ERROR PARA CONJUNTOS DE CONFIGURACIONES EN OPTIMIZACION DE FORMA CON ALGORITMOS EVOLUTIVOS/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/279578/EU/Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/RCUK/EPSRC/EP/G042705/1/GB/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20542/ES/DESARROLLO DE HERRAMIENTA 3D COMPUTACIONALMENTE EFICAZ Y DE ALTA PRECISION PARA ANALISIS Y DISEÑO ESTRUCTURAL BASADA EN MALLADOS CARTESIANOS DE EF INDEPENDIENTES DE GEOMETRIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20990/ES/APLICACION DEL METODO DE ELEMENTOS FINITOS EXTENDIDO Y MODELOS DE ZONA COHESIVA AL MODELADO MICROESTRUCTURAL DEL DAÑO EN HUESO CORTICAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | González Estrada, OA.; Ródenas, J.; Bordas, SPA.; Duflot, M.; Kerfriden, P.; Giner Maravilla, E. (2012). On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Engineering Computations. 29(8):814-841. https://doi.org/10.1108/02644401211271609 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1108/02644401211271609 | es_ES |
dc.description.upvformatpinicio | 814 | es_ES |
dc.description.upvformatpfin | 841 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 237728 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Babuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-5 | es_ES |
dc.description.references | BABUŠKA, I., STROUBOULIS, T., & UPADHYAY, C. S. (1997). A MODEL STUDY OF THE QUALITY OFA POSTERIORI ERROR ESTIMATORS FOR FINITE ELEMENT SOLUTIONS OF LINEAR ELLIPTIC PROBLEMS, WITH PARTICULAR REFERENCE TO THE BEHAVIOR NEAR THE BOUNDARY. International Journal for Numerical Methods in Engineering, 40(14), 2521-2577. doi:10.1002/(sici)1097-0207(19970730)40:14<2521::aid-nme181>3.0.co;2-a | es_ES |
dc.description.references | Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., & Copps, K. (1994). Validation ofa posteriori error estimators by numerical approach. International Journal for Numerical Methods in Engineering, 37(7), 1073-1123. doi:10.1002/nme.1620370702 | es_ES |
dc.description.references | Banks-Sills, L. (1991). Application of the Finite Element Method to Linear Elastic Fracture Mechanics. Applied Mechanics Reviews, 44(10), 447-461. doi:10.1115/1.3119488 | es_ES |
dc.description.references | Béchet, E., Minnebo, H., Moës, N., & Burgardt, B. (2005). Improved implementation and robustness study of the X-FEM for stress analysis around cracks. International Journal for Numerical Methods in Engineering, 64(8), 1033-1056. doi:10.1002/nme.1386 | es_ES |
dc.description.references | Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601-620. doi:10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s | es_ES |
dc.description.references | Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., & Snm Liu, W. K. (1996). Smoothing and accelerated computations in the element free Galerkin method. Journal of Computational and Applied Mathematics, 74(1-2), 111-126. doi:10.1016/0377-0427(96)00020-9 | es_ES |
dc.description.references | Bordas, S., & Duflot, M. (2007). Derivative recovery and a posteriori error estimate for extended finite elements. Computer Methods in Applied Mechanics and Engineering, 196(35-36), 3381-3399. doi:10.1016/j.cma.2007.03.011 | es_ES |
dc.description.references | Bordas, S., & Moran, B. (2006). Enriched finite elements and level sets for damage tolerance assessment of complex structures. Engineering Fracture Mechanics, 73(9), 1176-1201. doi:10.1016/j.engfracmech.2006.01.006 | es_ES |
dc.description.references | Bordas, S., Duflot, M., & Le, P. (2007). A simple error estimator for extended finite elements. Communications in Numerical Methods in Engineering, 24(11), 961-971. doi:10.1002/cnm.1001 | es_ES |
dc.description.references | Chessa, J., Wang, H., & Belytschko, T. (2003). On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering, 57(7), 1015-1038. doi:10.1002/nme.777 | es_ES |
dc.description.references | Díez, P., Parés, N., & Huerta, A. (2004). Accurate upper and lower error bounds by solving flux-free local problems in «stars». Revue Européenne des Éléments Finis, 13(5-7), 497-507. doi:10.3166/reef.13.497-507 | es_ES |
dc.description.references | Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837 | es_ES |
dc.description.references | Duflot, M. (2007). A study of the representation of cracks with level sets. International Journal for Numerical Methods in Engineering, 70(11), 1261-1302. doi:10.1002/nme.1915 | es_ES |
dc.description.references | Duflot, M., & Bordas, S. (2008). A posteriorierror estimation for extended finite elements by an extended global recovery. International Journal for Numerical Methods in Engineering, 76(8), 1123-1138. doi:10.1002/nme.2332 | es_ES |
dc.description.references | Fries, T. (2008). A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 75(5), 503-532. doi:10.1002/nme.2259 | es_ES |
dc.description.references | Giner, E., Fuenmayor, F. J., Baeza, L., & Tarancón, J. E. (2005). Error estimation for the finite element evaluation of and in mixed-mode linear elastic fracture mechanics. Finite Elements in Analysis and Design, 41(11-12), 1079-1104. doi:10.1016/j.finel.2004.11.004 | es_ES |
dc.description.references | Gracie, R., Wang, H., & Belytschko, T. (2008). Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. International Journal for Numerical Methods in Engineering, 74(11), 1645-1669. doi:10.1002/nme.2217 | es_ES |
dc.description.references | Li, F. Z., Shih, C. F., & Needleman, A. (1985). A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics, 21(2), 405-421. doi:10.1016/0013-7944(85)90029-3 | es_ES |
dc.description.references | Melenk, J. M., & Babuška, I. (1996). The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1-4), 289-314. doi:10.1016/s0045-7825(96)01087-0 | es_ES |
dc.description.references | Mo�s, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131-150. doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j | es_ES |
dc.description.references | Natarajan, S., Mahapatra, D.R. and Bordas, S.P.A. (2010), “Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework”,International Journal for Numerical Methods in Engineering, Vol. 83 No. 3, pp. 269‐94. | es_ES |
dc.description.references | Panetier, J., Ladevèze, P. and Chamoin, L. (2010), “Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM”,International Journal for Numerical Methods in Engineering, Vol. 81 No. 6, pp. 671‐700. | es_ES |
dc.description.references | Pannachet, T., Sluys, L. J., & Askes, H. (2009). Error estimation and adaptivity for discontinuous failure. International Journal for Numerical Methods in Engineering, 78(5), 528-563. doi:10.1002/nme.2495 | es_ES |
dc.description.references | Pereira, O. J. B. A., de Almeida, J. P. M., & Maunder, E. A. W. (1999). Adaptive methods for hybrid equilibrium finite element models. Computer Methods in Applied Mechanics and Engineering, 176(1-4), 19-39. doi:10.1016/s0045-7825(98)00328-4 | es_ES |
dc.description.references | Ródenas, J. J., González-Estrada, O. A., Díez, P., & Fuenmayor, F. J. (2010). Accurate recovery-based upper error bounds for the extended finite element framework. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2607-2621. doi:10.1016/j.cma.2010.04.010 | es_ES |
dc.description.references | Ródenas, J. J., González-Estrada, O. A., Tarancón, J. E., & Fuenmayor, F. J. (2008). A recovery-type error estimator for the extended finite element method based onsingular+smoothstress field splitting. International Journal for Numerical Methods in Engineering, 76(4), 545-571. doi:10.1002/nme.2313 | es_ES |
dc.description.references | Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903 | es_ES |
dc.description.references | Shih, C. and Asaro, R. (1988), “Elastic‐plastic analysis of cracks on bimaterial interfaces: part I – small scale yielding”,Journal of Applied Mechanics, Vol. 8, pp. 537‐45. | es_ES |
dc.description.references | Stolarska, M., Chopp, D. L., Moës, N., & Belytschko, T. (2001). Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 51(8), 943-960. doi:10.1002/nme.201 | es_ES |
dc.description.references | Strouboulis, T., Copps, K., & Babuška, I. (2001). The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. doi:10.1016/s0045-7825(01)00188-8 | es_ES |
dc.description.references | Strouboulis, T., Zhang, L., Wang, D., & Babuška, I. (2006). A posteriori error estimation for generalized finite element methods. Computer Methods in Applied Mechanics and Engineering, 195(9-12), 852-879. doi:10.1016/j.cma.2005.03.004 | es_ES |
dc.description.references | Tabbara, M., Blacker, T., & Belytschko, T. (1994). Finite element derivative recovery by moving least square interpolants. Computer Methods in Applied Mechanics and Engineering, 117(1-2), 211-223. doi:10.1016/0045-7825(94)90084-1 | es_ES |
dc.description.references | Tarancón, J. E., Vercher, A., Giner, E., & Fuenmayor, F. J. (2009). Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 77(1), 126-148. doi:10.1002/nme.2402 | es_ES |
dc.description.references | Ventura, G. (2006). On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method. International Journal for Numerical Methods in Engineering, 66(5), 761-795. doi:10.1002/nme.1570 | es_ES |
dc.description.references | Wyart, E., Coulon, D., Duflot, M., Pardoen, T., Remacle, J.-F., & Lani, F. (2007). A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures. International Journal for Numerical Methods in Engineering, 72(7), 757-779. doi:10.1002/nme.2029 | es_ES |
dc.description.references | Xiao, Q. Z., & Karihaloo, B. L. (2006). Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. International Journal for Numerical Methods in Engineering, 66(9), 1378-1410. doi:10.1002/nme.1601 | es_ES |
dc.description.references | Yau, J. F., Wang, S. S., & Corten, H. T. (1980). A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity. Journal of Applied Mechanics, 47(2), 335-341. doi:10.1115/1.3153665 | es_ES |
dc.description.references | Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206 | es_ES |
dc.description.references | Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702 | es_ES |
dc.description.references | Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33(7), 1365-1382. doi:10.1002/nme.1620330703 | es_ES |