- -

Excited state interactions between flurbiprofen and tryptophan in drug-protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Excited state interactions between flurbiprofen and tryptophan in drug-protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vayá Pérez, Ignacio es_ES
dc.contributor.author Bonancía Roca, Paula es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.contributor.author Markovitsi, Dimitra es_ES
dc.contributor.author Gustavsson, Thomas es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.date.accessioned 2016-02-23T11:06:34Z
dc.date.available 2016-02-23T11:06:34Z
dc.date.issued 2013
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10251/61116
dc.description.abstract We report here on the interaction dynamics between flurbiprofen (FBP) and tryptophan (Trp) covalently linked in model dyads and in a complex of FBP with human serum albumin (HSA) probed by time-resolved fluorescence spectroscopy from the femto- to the nano-second timescales. In the dyads, a rapid (k > 10(10) s(-1)) dynamic quenching of the (FBP star)-F-1 fluorescence is followed by a slower (k > 10(9) s(-1)) quenching of the remaining (1)Trp(star) fluorescence. Both processes display a clear stereoselectivity; the rates are 2-3 times higher for the (R,S)-dyad. In addition, a red-shifted exciplex emission is observed, rising in the range of 100-200 ps. A similar two-step dynamic fluorescence quenching is also observed in the FBP-HSA complex, although the kinetics of the involved processes are slower. The characteristic reorientational times determined for the two enantiomeric forms of FBP in the protein show that the interaction is stronger for the (R)-form. This is, to our knowledge, the first observation of stereo-selective flurbiprofen-tryptophan interaction dynamics with femtosecond time resolution. es_ES
dc.description.sponsorship Financial support from the Spanish Government (Grants CTQ2010-14882 and CTQ2009-13699, JCI-2011-09926, BES-2008-003314 and PR2011-0581), the Generalitat Valenciana (Prometeo 2008/090) and from the Universitat Politecnica de Valencia (PAID 05-11, Ref 2766) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HUMAN SERUM-ALBUMIN es_ES
dc.subject NONSTEROIDAL ANTIINFLAMMATORY DRUGS es_ES
dc.subject BIOLOGICAL NANOCAVITIES es_ES
dc.subject SPECTROSCOPIC ANALYSIS es_ES
dc.subject OCHRATOXIN-A es_ES
dc.subject BINDING es_ES
dc.subject DYNAMICS es_ES
dc.subject SOLVATION es_ES
dc.subject RESONANCE es_ES
dc.subject PHOSPHORESCENCE es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Excited state interactions between flurbiprofen and tryptophan in drug-protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3cp43847c
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-14882/ES/DIADAS FOTOACTIVAS COMO SONDAS PARA LA GENERACION DE ESPECIES TRANSITORIAS EN SISTEMAS MICROHETEROGENEOS DE TIPO BIOMIMETICO/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F090/ES/Especies fotoactivas como sondas para proteínas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-11-2766/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2008-003314/ES/BES-2008-003314/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JCI-2011-09926/ES/JCI-2011-09926/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-13699/ES/CTQ2009-13699/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Vayá Pérez, I.; Bonancía Roca, P.; Jiménez Molero, MC.; Markovitsi, D.; Gustavsson, T.; Miranda Alonso, MÁ. (2013). Excited state interactions between flurbiprofen and tryptophan in drug-protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains. Physical Chemistry Chemical Physics. 15(13):4727-4734. https://doi.org/10.1039/c3cp43847c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3cp43847c es_ES
dc.description.upvformatpinicio 4727 es_ES
dc.description.upvformatpfin 4734 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 13 es_ES
dc.relation.senia 234593 es_ES
dc.identifier.eissn 1463-9084
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Carter, D. C., & Ho, J. X. (1994). Structure of Serum Albumin. Advances in Protein Chemistry, 153-203. doi:10.1016/s0065-3233(08)60640-3 es_ES
dc.description.references Zimmermann, B., Hahnefeld, C., & Herberg, F. W. (2002). Applications of biomolecular interaction analysis in drug development. TARGETS, 1(2), 66-73. doi:10.1016/s1477-3627(02)02188-8 es_ES
dc.description.references Muckle, D. S. (1986). Flurbiprofen for the treatment of soft tissue trauma. The American Journal of Medicine, 80(3), 76-80. doi:10.1016/0002-9343(86)90116-6 es_ES
dc.description.references Vetrugno, M., Maino, A., Quaranta, G. M., & Cardia, L. (2000). A randomized, double-masked, clinical study of the efficacy of four nonsteroidal anti-inflammatory drugs in pain control after excimer laser photorefractive keratectomy. Clinical Therapeutics, 22(6), 719-731. doi:10.1016/s0149-2918(00)90006-7 es_ES
dc.description.references Bae, H.-A., Lee, K.-W., & Lee, Y.-H. (2006). Enantioselective properties of extracellular lipase from Serratia marcescens ES-2 for kinetic resolution of (S)-flurbiprofen. Journal of Molecular Catalysis B: Enzymatic, 40(1-2), 24-29. doi:10.1016/j.molcatb.2006.02.004 es_ES
dc.description.references Sagdinc, S., & Pir, H. (2009). Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu(II) and Hg(II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(1), 181-194. doi:10.1016/j.saa.2009.02.022 es_ES
dc.description.references Wybranowski, T., Cyrankiewicz, M., Ziomkowska, B., & Kruszewski, S. (2008). The HSA affinity of warfarin and flurbiprofen determined by fluorescence anisotropy measurements of camptothecin. Biosystems, 94(3), 258-262. doi:10.1016/j.biosystems.2008.05.034 es_ES
dc.description.references Il’ichev, Y. V., Perry, J. L., & Simon, J. D. (2002). Interaction of Ochratoxin A with Human Serum Albumin. Preferential Binding of the Dianion and pH Effects. The Journal of Physical Chemistry B, 106(2), 452-459. doi:10.1021/jp012314u es_ES
dc.description.references Il’ichev, Y. V., Perry, J. L., & Simon, J. D. (2002). Interaction of Ochratoxin A with Human Serum Albumin. A Common Binding Site of Ochratoxin A and Warfarin in Subdomain IIA. The Journal of Physical Chemistry B, 106(2), 460-465. doi:10.1021/jp012315m es_ES
dc.description.references Jiménez, M. C., Miranda, M. A., Tormos, R., & Vayá, I. (2004). Characterisation of the lowest singlet and triplet excited states of S-flurbiprofen. Photochem. Photobiol. Sci., 3(11-12), 1038-1041. doi:10.1039/b408530b es_ES
dc.description.references Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061 es_ES
dc.description.references Seedher, N., & Bhatia, S. (2005). Mechanism of interaction of the non-steroidal antiinflammatory drugs meloxicam and nimesulide with serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 39(1-2), 257-262. doi:10.1016/j.jpba.2005.02.031 es_ES
dc.description.references SEEDHER, N., & BHATIA, S. (2006). Reversible binding of celecoxib and valdecoxib with human serum albumin using fluorescence spectroscopic technique. Pharmacological Research, 54(2), 77-84. doi:10.1016/j.phrs.2006.02.008 es_ES
dc.description.references Nanda, R. K., Sarkar, N., & Banerjee, R. (2007). Probing the interaction of ellagic acid with human serum albumin: A fluorescence spectroscopic study. Journal of Photochemistry and Photobiology A: Chemistry, 192(2-3), 152-158. doi:10.1016/j.jphotochem.2007.05.018 es_ES
dc.description.references He, Y., Wang, Y., Tang, L., Liu, H., Chen, W., Zheng, Z., & Zou, G. (2007). Binding of Puerarin to Human Serum Albumin: A Spectroscopic Analysis and Molecular Docking. Journal of Fluorescence, 18(2), 433-442. doi:10.1007/s10895-007-0283-0 es_ES
dc.description.references Zhou, B., Li, R., Zhang, Y., & Liu, Y. (2008). Kinetic analysis of the interaction between amphotericin B and human serum albumin using surface plasmon resonance and fluorescence spectroscopy. Photochemical & Photobiological Sciences, 7(4), 453. doi:10.1039/b717897b es_ES
dc.description.references Vayá, I., Pérez-Ruiz, R., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2010). Drug–protein interactions assessed by fluorescence measurements in the real complexes and in model dyads. Chemical Physics Letters, 486(4-6), 147-153. doi:10.1016/j.cplett.2009.12.091 es_ES
dc.description.references Vahedian-Movahed, H., Saberi, M. R., & Chamani, J. (2011). Comparison of Binding Interactions of Lomefloxacin to Serum Albumin and Serum Transferrin by Resonance Light Scattering and Fluorescence Quenching Methods. Journal of Biomolecular Structure and Dynamics, 28(4), 483-502. doi:10.1080/07391102.2011.10508590 es_ES
dc.description.references Hemmateenejad, B., Shamsipur, M., Samari, F., Khayamian, T., Ebrahimi, M., & Rezaei, Z. (2012). Combined fluorescence spectroscopy and molecular modeling studies on the interaction between harmalol and human serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 67-68, 201-208. doi:10.1016/j.jpba.2012.04.012 es_ES
dc.description.references Katrahalli, U., Kalalbandi, V. K. A., & Jaldappagari, S. (2012). The effect of anti-tubercular drug, ethionamide on the secondary structure of serum albumins: A biophysical study. Journal of Pharmaceutical and Biomedical Analysis, 59, 102-108. doi:10.1016/j.jpba.2011.09.013 es_ES
dc.description.references El-Kemary, M., Gil, M., & Douhal, A. (2007). Relaxation Dynamics of Piroxicam Structures within Human Serum Albumin Protein. Journal of Medicinal Chemistry, 50(12), 2896-2902. doi:10.1021/jm061421f es_ES
dc.description.references Tormo, L., Organero, J. A., Cohen, B., Martin, C., Santos, L., & Douhal, A. (2008). Dynamical and Structural Changes of an Anesthetic Analogue in Chemical and Biological Nanocavities. The Journal of Physical Chemistry B, 112(43), 13641-13647. doi:10.1021/jp803083y es_ES
dc.description.references Tardioli, S., Lammers, I., Hooijschuur, J.-H., Ariese, F., van der Zwan, G., & Gooijer, C. (2012). Complementary Fluorescence and Phosphorescence Study of the Interaction of Brompheniramine with Human Serum Albumin. The Journal of Physical Chemistry B, 116(24), 7033-7039. doi:10.1021/jp300055c es_ES
dc.description.references Zhong, D., Douhal, A., & Zewail, A. H. (2000). Femtosecond studies of protein-ligand hydrophobic binding and dynamics: Human serum albumin. Proceedings of the National Academy of Sciences, 97(26), 14056-14061. doi:10.1073/pnas.250491297 es_ES
dc.description.references Douhal, A., Sanz, M., & Tormo, L. (2005). Femtochemistry of orange II in solution and in chemical and biological nanocavities. Proceedings of the National Academy of Sciences, 102(52), 18807-18812. doi:10.1073/pnas.0507459102 es_ES
dc.description.references Cohen, B., Organero, J. A., Santos, L., Rodriguez Padial, L., & Douhal, A. (2010). Exploring the Ground and Excited States Structural Diversity of Levosimendan, a Cardiovascular Calcium Sensitizer†. The Journal of Physical Chemistry B, 114(45), 14787-14795. doi:10.1021/jp105343f es_ES
dc.description.references Gil, M., Wang, Y., & Douhal, A. (2012). Ultrafast dynamics of lumichrome in solution and in chemical and biological caging media. Journal of Photochemistry and Photobiology A: Chemistry, 234, 146-155. doi:10.1016/j.jphotochem.2012.01.017 es_ES
dc.description.references Wang, Y., Cohen, B., Jicsinszky, L., & Douhal, A. (2012). Femtosecond to Second Studies of a Water-Soluble Porphyrin Derivative in Chemical and Biological Nanocavities. Langmuir, 28(9), 4363-4372. doi:10.1021/la204949e es_ES
dc.description.references Takla, P. G., Schulman, S. G., & Perrin, J. H. (1985). Measurement of flurbiprofen—human serum albumin interaction by fluorimetry. Journal of Pharmaceutical and Biomedical Analysis, 3(1), 41-50. doi:10.1016/0731-7085(85)80005-4 es_ES
dc.description.references Lammers, I., Lhiaubet-Vallet, V., Consuelo Jiménez, M., Ariese, F., Miranda, M. A., & Gooijer, C. (2012). Stereoselective Binding of Flurbiprofen Enantiomers and their Methyl Esters to Human Serum Albumin Studied by Time-Resolved Phosphorescence. Chirality, 24(10), 840-846. doi:10.1002/chir.22080 es_ES
dc.description.references Amiri, M., Jankeje, K., & Albani, J. R. (2010). Origin of Fluorescence Lifetimes in Human Serum Albumin. Studies on Native and Denatured Protein. Journal of Fluorescence, 20(3), 651-656. doi:10.1007/s10895-010-0597-1 es_ES
dc.description.references Vayá, I., Jiménez, M. C., & Miranda, M. A. (2007). Excited-State Interactions in Flurbiprofen−Tryptophan Dyads. The Journal of Physical Chemistry B, 111(31), 9363-9371. doi:10.1021/jp071301z es_ES
dc.description.references Jiménez, M. C., Pischel, U., & Miranda, M. A. (2007). Photoinduced processes in naproxen-based chiral dyads. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 8(3), 128-142. doi:10.1016/j.jphotochemrev.2007.10.001 es_ES
dc.description.references Abad, S., Pischel, U., & Miranda, M. A. (2005). Wavelength-Dependent Stereodifferentiation in the Fluorescence Quenching of Asymmetric Naphthalene-Based Dyads by Amines. The Journal of Physical Chemistry A, 109(12), 2711-2717. doi:10.1021/jp047996a es_ES
dc.description.references Abad, S., Vayá, I., Jiménez, M. C., Pischel, U., & Miranda, M. A. (2006). Diastereodifferentiation of Novel Naphthalene Dyads by Fluorescence Quenching and Excimer Formation. ChemPhysChem, 7(10), 2175-2183. doi:10.1002/cphc.200600337 es_ES
dc.description.references Rehm, D., & Weller, A. (1970). Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Israel Journal of Chemistry, 8(2), 259-271. doi:10.1002/ijch.197000029 es_ES
dc.description.references Gustavsson, T., Sharonov, A., & Markovitsi, D. (2002). Thymine, thymidine and thymidine 5′-monophosphate studied by femtosecond fluorescence upconversion spectroscopy. Chemical Physics Letters, 351(3-4), 195-200. doi:10.1016/s0009-2614(01)01375-6 es_ES
dc.description.references Miannay, F.-A., Gustavsson, T., Banyasz, A., & Markovitsi, D. (2010). Excited-State Dynamics of dGMP Measured by Steady-State and Femtosecond Fluorescence Spectroscopy†. The Journal of Physical Chemistry A, 114(9), 3256-3263. doi:10.1021/jp909410b es_ES
dc.description.references Markovitsi, D., Onidas, D., Talbot, F., Marguet, S., Gustavsson, T., & Lazzarotto, E. (2006). UVB/UVC induced processes in model DNA helices studied by time-resolved spectroscopy: Pitfalls and tricks. Journal of Photochemistry and Photobiology A: Chemistry, 183(1-2), 1-8. doi:10.1016/j.jphotochem.2006.05.029 es_ES
dc.description.references Bonancía, P., Vayá, I., Climent, M. J., Gustavsson, T., Markovitsi, D., Jiménez, M. C., & Miranda, M. A. (2012). Excited-State Interactions in Diastereomeric Flurbiprofen–Thymine Dyads. The Journal of Physical Chemistry A, 116(35), 8807-8814. doi:10.1021/jp3063838 es_ES
dc.description.references Petrich, J. W., Chang, M. C., McDonald, D. B., & Fleming, G. R. (1983). On the origin of nonexponential fluorescence decay in tryptophan and its derivatives. Journal of the American Chemical Society, 105(12), 3824-3832. doi:10.1021/ja00350a014 es_ES
dc.description.references Lemmetyinen, H., Tkachenko, N., Efimov, A., & Niemi, M. (2009). Transient states in photoinduced electron transfer reactions of porphyrin- and phthalocyanine-fullerene dyads. Journal of Porphyrins and Phthalocyanines, 13(10), 1090-1097. doi:10.1142/s108842460900139x es_ES
dc.description.references Siemiarczuk, A., Petersen, C. E., Ha, C.-E., Yang, J., & Bhagavan, N. V. (2004). Analysis of Tryptophan Fluorescence Lifetimes in a Series of Human Serum Albumin Mutants with Substitutions in Subdomain 2A. Cell Biochemistry and Biophysics, 40(2), 115-122. doi:10.1385/cbb:40:2:115 es_ES
dc.description.references Beechem, J. M., & Brand, L. (1985). Time-Resolved Fluorescence of Proteins. Annual Review of Biochemistry, 54(1), 43-71. doi:10.1146/annurev.bi.54.070185.000355 es_ES
dc.description.references Sarkar, A., & Bhattacharya, S. C. (2012). Selective fluorescence resonance energy transfer from serum albumins to a bio-active 3-pyrazolyl-2-pyrazoline derivative: A spectroscopic analysis. Journal of Luminescence, 132(10), 2612-2618. doi:10.1016/j.jlumin.2012.04.053 es_ES
dc.description.references Lu, W., Kim, J., Qiu, W., & Zhong, D. (2004). Femtosecond studies of tryptophan solvation: correlation function and water dynamics at lipid surfaces. Chemical Physics Letters, 388(1-3), 120-126. doi:10.1016/j.cplett.2004.03.012 es_ES
dc.description.references Qiu, W., Zhang, L., Okobiah, O., Yang, Y., Wang, L., Zhong, D., & Zewail, A. H. (2006). Ultrafast Solvation Dynamics of Human Serum Albumin:  Correlations with Conformational Transitions and Site-Selected Recognition. The Journal of Physical Chemistry B, 110(21), 10540-10549. doi:10.1021/jp055989w es_ES
dc.description.references Zhang, L., Kao, Y.-T., Qiu, W., Wang, L., & Zhong, D. (2006). Femtosecond Studies of Tryptophan Fluorescence Dynamics in Proteins:  Local Solvation and Electronic Quenching. The Journal of Physical Chemistry B, 110(37), 18097-18103. doi:10.1021/jp063025e es_ES
dc.description.references Schröder, G. F., Alexiev, U., & Grubmüller, H. (2005). Simulation of Fluorescence Anisotropy Experiments: Probing Protein Dynamics. Biophysical Journal, 89(6), 3757-3770. doi:10.1529/biophysj.105.069500 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem