- -

Excited state interactions between flurbiprofen and tryptophan in drug-protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Excited state interactions between flurbiprofen and tryptophan in drug-protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains

Mostrar el registro completo del ítem

Vayá Pérez, I.; Bonancía Roca, P.; Jiménez Molero, MC.; Markovitsi, D.; Gustavsson, T.; Miranda Alonso, MÁ. (2013). Excited state interactions between flurbiprofen and tryptophan in drug-protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains. Physical Chemistry Chemical Physics. 15(13):4727-4734. https://doi.org/10.1039/c3cp43847c

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61116

Ficheros en el ítem

Metadatos del ítem

Título: Excited state interactions between flurbiprofen and tryptophan in drug-protein complexes and in model dyads. Fluorescence studies from the femtosecond to the nanosecond time domains
Autor: Vayá Pérez, Ignacio Bonancía Roca, Paula Jiménez Molero, María Consuelo Markovitsi, Dimitra Gustavsson, Thomas Miranda Alonso, Miguel Ángel
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
We report here on the interaction dynamics between flurbiprofen (FBP) and tryptophan (Trp) covalently linked in model dyads and in a complex of FBP with human serum albumin (HSA) probed by time-resolved fluorescence ...[+]
Palabras clave: HUMAN SERUM-ALBUMIN , NONSTEROIDAL ANTIINFLAMMATORY DRUGS , BIOLOGICAL NANOCAVITIES , SPECTROSCOPIC ANALYSIS , OCHRATOXIN-A , BINDING , DYNAMICS , SOLVATION , RESONANCE , PHOSPHORESCENCE
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 ) (eissn: 1463-9084 )
DOI: 10.1039/c3cp43847c
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c3cp43847c
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2010-14882/ES/DIADAS FOTOACTIVAS COMO SONDAS PARA LA GENERACION DE ESPECIES TRANSITORIAS EN SISTEMAS MICROHETEROGENEOS DE TIPO BIOMIMETICO/ /
...[+]
info:eu-repo/grantAgreement/MICINN//CTQ2010-14882/ES/DIADAS FOTOACTIVAS COMO SONDAS PARA LA GENERACION DE ESPECIES TRANSITORIAS EN SISTEMAS MICROHETEROGENEOS DE TIPO BIOMIMETICO/ /
info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F090/ES/Especies fotoactivas como sondas para proteínas/
info:eu-repo/grantAgreement/UPV//PAID-05-11-2766/
info:eu-repo/grantAgreement/MICINN//BES-2008-003314/ES/BES-2008-003314/
info:eu-repo/grantAgreement/MICINN//JCI-2011-09926/ES/JCI-2011-09926/
info:eu-repo/grantAgreement/MICINN//CTQ2009-13699/ES/CTQ2009-13699/
[-]
Agradecimientos:
Financial support from the Spanish Government (Grants CTQ2010-14882 and CTQ2009-13699, JCI-2011-09926, BES-2008-003314 and PR2011-0581), the Generalitat Valenciana (Prometeo 2008/090) and from the Universitat Politecnica ...[+]
Tipo: Artículo

References

Carter, D. C., & Ho, J. X. (1994). Structure of Serum Albumin. Advances in Protein Chemistry, 153-203. doi:10.1016/s0065-3233(08)60640-3

Zimmermann, B., Hahnefeld, C., & Herberg, F. W. (2002). Applications of biomolecular interaction analysis in drug development. TARGETS, 1(2), 66-73. doi:10.1016/s1477-3627(02)02188-8

Muckle, D. S. (1986). Flurbiprofen for the treatment of soft tissue trauma. The American Journal of Medicine, 80(3), 76-80. doi:10.1016/0002-9343(86)90116-6 [+]
Carter, D. C., & Ho, J. X. (1994). Structure of Serum Albumin. Advances in Protein Chemistry, 153-203. doi:10.1016/s0065-3233(08)60640-3

Zimmermann, B., Hahnefeld, C., & Herberg, F. W. (2002). Applications of biomolecular interaction analysis in drug development. TARGETS, 1(2), 66-73. doi:10.1016/s1477-3627(02)02188-8

Muckle, D. S. (1986). Flurbiprofen for the treatment of soft tissue trauma. The American Journal of Medicine, 80(3), 76-80. doi:10.1016/0002-9343(86)90116-6

Vetrugno, M., Maino, A., Quaranta, G. M., & Cardia, L. (2000). A randomized, double-masked, clinical study of the efficacy of four nonsteroidal anti-inflammatory drugs in pain control after excimer laser photorefractive keratectomy. Clinical Therapeutics, 22(6), 719-731. doi:10.1016/s0149-2918(00)90006-7

Bae, H.-A., Lee, K.-W., & Lee, Y.-H. (2006). Enantioselective properties of extracellular lipase from Serratia marcescens ES-2 for kinetic resolution of (S)-flurbiprofen. Journal of Molecular Catalysis B: Enzymatic, 40(1-2), 24-29. doi:10.1016/j.molcatb.2006.02.004

Sagdinc, S., & Pir, H. (2009). Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu(II) and Hg(II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(1), 181-194. doi:10.1016/j.saa.2009.02.022

Wybranowski, T., Cyrankiewicz, M., Ziomkowska, B., & Kruszewski, S. (2008). The HSA affinity of warfarin and flurbiprofen determined by fluorescence anisotropy measurements of camptothecin. Biosystems, 94(3), 258-262. doi:10.1016/j.biosystems.2008.05.034

Il’ichev, Y. V., Perry, J. L., & Simon, J. D. (2002). Interaction of Ochratoxin A with Human Serum Albumin. Preferential Binding of the Dianion and pH Effects. The Journal of Physical Chemistry B, 106(2), 452-459. doi:10.1021/jp012314u

Il’ichev, Y. V., Perry, J. L., & Simon, J. D. (2002). Interaction of Ochratoxin A with Human Serum Albumin. A Common Binding Site of Ochratoxin A and Warfarin in Subdomain IIA. The Journal of Physical Chemistry B, 106(2), 460-465. doi:10.1021/jp012315m

Jiménez, M. C., Miranda, M. A., Tormos, R., & Vayá, I. (2004). Characterisation of the lowest singlet and triplet excited states of S-flurbiprofen. Photochem. Photobiol. Sci., 3(11-12), 1038-1041. doi:10.1039/b408530b

Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061

Seedher, N., & Bhatia, S. (2005). Mechanism of interaction of the non-steroidal antiinflammatory drugs meloxicam and nimesulide with serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 39(1-2), 257-262. doi:10.1016/j.jpba.2005.02.031

SEEDHER, N., & BHATIA, S. (2006). Reversible binding of celecoxib and valdecoxib with human serum albumin using fluorescence spectroscopic technique. Pharmacological Research, 54(2), 77-84. doi:10.1016/j.phrs.2006.02.008

Nanda, R. K., Sarkar, N., & Banerjee, R. (2007). Probing the interaction of ellagic acid with human serum albumin: A fluorescence spectroscopic study. Journal of Photochemistry and Photobiology A: Chemistry, 192(2-3), 152-158. doi:10.1016/j.jphotochem.2007.05.018

He, Y., Wang, Y., Tang, L., Liu, H., Chen, W., Zheng, Z., & Zou, G. (2007). Binding of Puerarin to Human Serum Albumin: A Spectroscopic Analysis and Molecular Docking. Journal of Fluorescence, 18(2), 433-442. doi:10.1007/s10895-007-0283-0

Zhou, B., Li, R., Zhang, Y., & Liu, Y. (2008). Kinetic analysis of the interaction between amphotericin B and human serum albumin using surface plasmon resonance and fluorescence spectroscopy. Photochemical & Photobiological Sciences, 7(4), 453. doi:10.1039/b717897b

Vayá, I., Pérez-Ruiz, R., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2010). Drug–protein interactions assessed by fluorescence measurements in the real complexes and in model dyads. Chemical Physics Letters, 486(4-6), 147-153. doi:10.1016/j.cplett.2009.12.091

Vahedian-Movahed, H., Saberi, M. R., & Chamani, J. (2011). Comparison of Binding Interactions of Lomefloxacin to Serum Albumin and Serum Transferrin by Resonance Light Scattering and Fluorescence Quenching Methods. Journal of Biomolecular Structure and Dynamics, 28(4), 483-502. doi:10.1080/07391102.2011.10508590

Hemmateenejad, B., Shamsipur, M., Samari, F., Khayamian, T., Ebrahimi, M., & Rezaei, Z. (2012). Combined fluorescence spectroscopy and molecular modeling studies on the interaction between harmalol and human serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 67-68, 201-208. doi:10.1016/j.jpba.2012.04.012

Katrahalli, U., Kalalbandi, V. K. A., & Jaldappagari, S. (2012). The effect of anti-tubercular drug, ethionamide on the secondary structure of serum albumins: A biophysical study. Journal of Pharmaceutical and Biomedical Analysis, 59, 102-108. doi:10.1016/j.jpba.2011.09.013

El-Kemary, M., Gil, M., & Douhal, A. (2007). Relaxation Dynamics of Piroxicam Structures within Human Serum Albumin Protein. Journal of Medicinal Chemistry, 50(12), 2896-2902. doi:10.1021/jm061421f

Tormo, L., Organero, J. A., Cohen, B., Martin, C., Santos, L., & Douhal, A. (2008). Dynamical and Structural Changes of an Anesthetic Analogue in Chemical and Biological Nanocavities. The Journal of Physical Chemistry B, 112(43), 13641-13647. doi:10.1021/jp803083y

Tardioli, S., Lammers, I., Hooijschuur, J.-H., Ariese, F., van der Zwan, G., & Gooijer, C. (2012). Complementary Fluorescence and Phosphorescence Study of the Interaction of Brompheniramine with Human Serum Albumin. The Journal of Physical Chemistry B, 116(24), 7033-7039. doi:10.1021/jp300055c

Zhong, D., Douhal, A., & Zewail, A. H. (2000). Femtosecond studies of protein-ligand hydrophobic binding and dynamics: Human serum albumin. Proceedings of the National Academy of Sciences, 97(26), 14056-14061. doi:10.1073/pnas.250491297

Douhal, A., Sanz, M., & Tormo, L. (2005). Femtochemistry of orange II in solution and in chemical and biological nanocavities. Proceedings of the National Academy of Sciences, 102(52), 18807-18812. doi:10.1073/pnas.0507459102

Cohen, B., Organero, J. A., Santos, L., Rodriguez Padial, L., & Douhal, A. (2010). Exploring the Ground and Excited States Structural Diversity of Levosimendan, a Cardiovascular Calcium Sensitizer†. The Journal of Physical Chemistry B, 114(45), 14787-14795. doi:10.1021/jp105343f

Gil, M., Wang, Y., & Douhal, A. (2012). Ultrafast dynamics of lumichrome in solution and in chemical and biological caging media. Journal of Photochemistry and Photobiology A: Chemistry, 234, 146-155. doi:10.1016/j.jphotochem.2012.01.017

Wang, Y., Cohen, B., Jicsinszky, L., & Douhal, A. (2012). Femtosecond to Second Studies of a Water-Soluble Porphyrin Derivative in Chemical and Biological Nanocavities. Langmuir, 28(9), 4363-4372. doi:10.1021/la204949e

Takla, P. G., Schulman, S. G., & Perrin, J. H. (1985). Measurement of flurbiprofen—human serum albumin interaction by fluorimetry. Journal of Pharmaceutical and Biomedical Analysis, 3(1), 41-50. doi:10.1016/0731-7085(85)80005-4

Lammers, I., Lhiaubet-Vallet, V., Consuelo Jiménez, M., Ariese, F., Miranda, M. A., & Gooijer, C. (2012). Stereoselective Binding of Flurbiprofen Enantiomers and their Methyl Esters to Human Serum Albumin Studied by Time-Resolved Phosphorescence. Chirality, 24(10), 840-846. doi:10.1002/chir.22080

Amiri, M., Jankeje, K., & Albani, J. R. (2010). Origin of Fluorescence Lifetimes in Human Serum Albumin. Studies on Native and Denatured Protein. Journal of Fluorescence, 20(3), 651-656. doi:10.1007/s10895-010-0597-1

Vayá, I., Jiménez, M. C., & Miranda, M. A. (2007). Excited-State Interactions in Flurbiprofen−Tryptophan Dyads. The Journal of Physical Chemistry B, 111(31), 9363-9371. doi:10.1021/jp071301z

Jiménez, M. C., Pischel, U., & Miranda, M. A. (2007). Photoinduced processes in naproxen-based chiral dyads. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 8(3), 128-142. doi:10.1016/j.jphotochemrev.2007.10.001

Abad, S., Pischel, U., & Miranda, M. A. (2005). Wavelength-Dependent Stereodifferentiation in the Fluorescence Quenching of Asymmetric Naphthalene-Based Dyads by Amines. The Journal of Physical Chemistry A, 109(12), 2711-2717. doi:10.1021/jp047996a

Abad, S., Vayá, I., Jiménez, M. C., Pischel, U., & Miranda, M. A. (2006). Diastereodifferentiation of Novel Naphthalene Dyads by Fluorescence Quenching and Excimer Formation. ChemPhysChem, 7(10), 2175-2183. doi:10.1002/cphc.200600337

Rehm, D., & Weller, A. (1970). Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Israel Journal of Chemistry, 8(2), 259-271. doi:10.1002/ijch.197000029

Gustavsson, T., Sharonov, A., & Markovitsi, D. (2002). Thymine, thymidine and thymidine 5′-monophosphate studied by femtosecond fluorescence upconversion spectroscopy. Chemical Physics Letters, 351(3-4), 195-200. doi:10.1016/s0009-2614(01)01375-6

Miannay, F.-A., Gustavsson, T., Banyasz, A., & Markovitsi, D. (2010). Excited-State Dynamics of dGMP Measured by Steady-State and Femtosecond Fluorescence Spectroscopy†. The Journal of Physical Chemistry A, 114(9), 3256-3263. doi:10.1021/jp909410b

Markovitsi, D., Onidas, D., Talbot, F., Marguet, S., Gustavsson, T., & Lazzarotto, E. (2006). UVB/UVC induced processes in model DNA helices studied by time-resolved spectroscopy: Pitfalls and tricks. Journal of Photochemistry and Photobiology A: Chemistry, 183(1-2), 1-8. doi:10.1016/j.jphotochem.2006.05.029

Bonancía, P., Vayá, I., Climent, M. J., Gustavsson, T., Markovitsi, D., Jiménez, M. C., & Miranda, M. A. (2012). Excited-State Interactions in Diastereomeric Flurbiprofen–Thymine Dyads. The Journal of Physical Chemistry A, 116(35), 8807-8814. doi:10.1021/jp3063838

Petrich, J. W., Chang, M. C., McDonald, D. B., & Fleming, G. R. (1983). On the origin of nonexponential fluorescence decay in tryptophan and its derivatives. Journal of the American Chemical Society, 105(12), 3824-3832. doi:10.1021/ja00350a014

Lemmetyinen, H., Tkachenko, N., Efimov, A., & Niemi, M. (2009). Transient states in photoinduced electron transfer reactions of porphyrin- and phthalocyanine-fullerene dyads. Journal of Porphyrins and Phthalocyanines, 13(10), 1090-1097. doi:10.1142/s108842460900139x

Siemiarczuk, A., Petersen, C. E., Ha, C.-E., Yang, J., & Bhagavan, N. V. (2004). Analysis of Tryptophan Fluorescence Lifetimes in a Series of Human Serum Albumin Mutants with Substitutions in Subdomain 2A. Cell Biochemistry and Biophysics, 40(2), 115-122. doi:10.1385/cbb:40:2:115

Beechem, J. M., & Brand, L. (1985). Time-Resolved Fluorescence of Proteins. Annual Review of Biochemistry, 54(1), 43-71. doi:10.1146/annurev.bi.54.070185.000355

Sarkar, A., & Bhattacharya, S. C. (2012). Selective fluorescence resonance energy transfer from serum albumins to a bio-active 3-pyrazolyl-2-pyrazoline derivative: A spectroscopic analysis. Journal of Luminescence, 132(10), 2612-2618. doi:10.1016/j.jlumin.2012.04.053

Lu, W., Kim, J., Qiu, W., & Zhong, D. (2004). Femtosecond studies of tryptophan solvation: correlation function and water dynamics at lipid surfaces. Chemical Physics Letters, 388(1-3), 120-126. doi:10.1016/j.cplett.2004.03.012

Qiu, W., Zhang, L., Okobiah, O., Yang, Y., Wang, L., Zhong, D., & Zewail, A. H. (2006). Ultrafast Solvation Dynamics of Human Serum Albumin:  Correlations with Conformational Transitions and Site-Selected Recognition. The Journal of Physical Chemistry B, 110(21), 10540-10549. doi:10.1021/jp055989w

Zhang, L., Kao, Y.-T., Qiu, W., Wang, L., & Zhong, D. (2006). Femtosecond Studies of Tryptophan Fluorescence Dynamics in Proteins:  Local Solvation and Electronic Quenching. The Journal of Physical Chemistry B, 110(37), 18097-18103. doi:10.1021/jp063025e

Schröder, G. F., Alexiev, U., & Grubmüller, H. (2005). Simulation of Fluorescence Anisotropy Experiments: Probing Protein Dynamics. Biophysical Journal, 89(6), 3757-3770. doi:10.1529/biophysj.105.069500

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem