- -

Extending and factorizing bounded bilinear maps defined on order continuous Banach function spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extending and factorizing bounded bilinear maps defined on order continuous Banach function spaces

Mostrar el registro completo del ítem

Calabuig Rodriguez, JM.; Fernandez Unzueta, M.; Galaz Fontes, F.; Sánchez Pérez, EA. (2014). Extending and factorizing bounded bilinear maps defined on order continuous Banach function spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas (RACSAM). 108(2):353-367. https://doi.org/10.1007/s13398-012-0101-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61397

Ficheros en el ítem

Metadatos del ítem

Título: Extending and factorizing bounded bilinear maps defined on order continuous Banach function spaces
Autor: Calabuig Rodriguez, Jose Manuel Fernandez Unzueta, M. Galaz Fontes, F. Sánchez Pérez, Enrique Alfonso
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
We consider the problem of extending or factorizing a bounded bilinear map defined on a couple of order continuous Banach function spaces to its optimal domain, i.e. the biggest couple of Banach function spaces to which ...[+]
Palabras clave: Order continuous , Banach function spaces , Vector measures , Integrable functions , Optimal domain , Bilinear map
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas (RACSAM). (issn: 1578-7303 ) (eissn: 1579-1505 )
DOI: 10.1007/s13398-012-0101-7
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/s13398-012-0101-7
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2011-23164/ES/ANALISIS DE FOURIER MULTILINEAL, VECTORIAL Y SUS APLICACIONES/
info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-02/ES/Integracion Bilineal, Medidas Vectoriales Y Espacios De Funciones De Banach./
info:eu-repo/grantAgreement/UPV//PAID-00-11/
"Jose Castillejo" (MEC)
Agradecimientos:
J. M. Calabuig was supported by Ministerio de Economia y Competitividad (Spain) (project MTM2011-23164) and by "Jose Castillejo 2009" (MEC). E. A. Sanchez-Perez was supported by MEC and FEDER (project MTM2009-14483-C02-02). ...[+]
Tipo: Artículo

References

Calabuig, J.M., Galaz-Fontes, F., Jiménez Fernández, E., Sánchez Pérez, E.A.: Strong factorization of operators on spaces of vector measure integrable functions and unconditional convergence of series. Math. Z. 257, 381–402 (2007)

Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010)

Curbera, G.P.: Operators into $$L^1$$ of a vector measure and applications to Banach lattices. Math. Ann. 293, 317–330 (1992) [+]
Calabuig, J.M., Galaz-Fontes, F., Jiménez Fernández, E., Sánchez Pérez, E.A.: Strong factorization of operators on spaces of vector measure integrable functions and unconditional convergence of series. Math. Z. 257, 381–402 (2007)

Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010)

Curbera, G.P.: Operators into $$L^1$$ of a vector measure and applications to Banach lattices. Math. Ann. 293, 317–330 (1992)

Curbera, G.P., Ricker, W.J.: Optimal domains for kernel operators via interpolation. Math. Nachr. 244, 47–63 (2002)

Curbera, G.P. , Ricker, W.J.: Optimal domains for the kernel operator associated with Sobolev’s inequality. Studia Math. 158(2), 131–152 (2003) [see also Corrigenda in the same journal, 170 (2005) 217–218)]

Delgado, O.: Banach function subspaces of $$L^1$$ of a vector measure and related Orlicz spaces. Indag. Math. (N. S.) 15, 485–495 (2004)

Delgado, O.: Optimal domains for kernel operators on $$[0,\infty )\times [0,\infty )$$ . Studia Math. 174, 131–145 (2006)

Delgado, O., Soria, J.: Optimal domain for the Hardy operator. J. Funct. Anal. 244, 119–133 (2007)

Diestel, J., Uhl, J.J.: Vector measures. In: Math. Surveys, vol. 15. Amer. Math. Soc., Providence (1977)

Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)

Galdames, O., Sánchez Pérez, E.A.: Optimal range theorems for operators with $$p$$ -th power factorable adjoints. Banach J. Math. Anal. 6(1), 61–73 (2012)

Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces. In: Oper. Theory Adv. Math. Appl., vol. 180. Birkäuser, Basel (2008)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem