Mostrar el registro sencillo del ítem
dc.contributor.author | Mateo Jiménez, Fernando | es_ES |
dc.contributor.author | Gadea Gironés, Rafael | es_ES |
dc.contributor.author | Medina, A. | es_ES |
dc.contributor.author | Mateo, R. | es_ES |
dc.contributor.author | Jiménez, M. | es_ES |
dc.date.accessioned | 2016-03-08T10:23:31Z | |
dc.date.available | 2016-03-08T10:23:31Z | |
dc.date.issued | 2009-09 | |
dc.identifier.issn | 1364-5072 | |
dc.identifier.uri | http://hdl.handle.net/10251/61542 | |
dc.description.abstract | Aims: To study the ability of multi-layer perceptron artificial neural networks (MLP-ANN) and radial-basis function networks (RBFNs) to predict ochratoxin A (OTA) concentration over time in grape-based cultures of Aspergillus carbonarius under different conditions of temperature, water activity (a(w)) and sub-inhibitory doses of the fungicide carbendazim. Methods and Results: A strain of A. carbonarius was cultured in a red grape juice-based medium. The input variables to the network were temperature (20-28 degrees C), a(w) (0 center dot 94-0 center dot 98), carbendazim level (0-450 ng ml(-1)) and time (3-15 days after the lag phase). The output of the ANNs was OTA level determined by liquid chromatography. Three algorithms were comparatively tested for MLP. The lowest error was obtained by MLP without validation. Performance decreased when hold-out validation was accomplished but the risk of over-fitting is also lower. The best MLP architecture was determined. RBFNs provided similar performances but a substantially higher number of hidden nodes were needed. Conclusions: ANNs are useful to predict OTA level in grape juice cultures of A. carbonarius over a range of a(w), temperature and carbendazim doses. Significance and Impact of the Study: This is a pioneering study on the application of ANNs to forecast OTA accumulation in food based substrates. These models can be similarly applied to other mycotoxins and fungal species. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish 'Ministerio de Educacion y Ciencia' (projects AGL-2004-07549-C05-02 and AGL2007-66416-C05-01 and a research grant) and the Valencian Government 'Conselleria de Empresa, Universitat i Ciencia' (project GV04B-111 and ACOMP/2007/155 and a research grant). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of Applied Microbiology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aspergillus carbonarius | es_ES |
dc.subject | Grape-based products | es_ES |
dc.subject | Mycotoxigenic fungi | es_ES |
dc.subject | Mycotoxins | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Ochratoxin A | es_ES |
dc.subject | Predictive mycology | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Predictive assessment of ochratoxin A accumulation in grape juice based-medium by Aspergillus carbonarius using neural networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/j.1365-2672.2009.04264.x | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AGL2004-07549-C05-02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AGL2007-66416-C05-01/ES/PRESENCIA SIMULTANEA DE MICOTOXINAS EN ALIMENTOS. EVALUACION DEL PELIGRO POTENCIAL Y REAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV04B-111/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2007%2F155/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Mateo Jiménez, F.; Gadea Gironés, R.; Medina, A.; Mateo, R.; Jiménez, M. (2009). Predictive assessment of ochratoxin A accumulation in grape juice based-medium by Aspergillus carbonarius using neural networks. Journal of Applied Microbiology. 107(3):915-927. https://doi.org/10.1111/j.1365-2672.2009.04264.x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1111/j.1365-2672.2009.04264.x | es_ES |
dc.description.upvformatpinicio | 915 | es_ES |
dc.description.upvformatpfin | 927 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 107 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 39546 | es_ES |
dc.identifier.eissn | 1365-2672 | |
dc.identifier.pmid | 19486411 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Battilani, P., Magan, N., & Logrieco, A. (2006). European research on ochratoxin A in grapes and wine. International Journal of Food Microbiology, 111, S2-S4. doi:10.1016/j.ijfoodmicro.2006.02.007 | es_ES |
dc.description.references | Belli, N., Ramos, A. J., Sanchis, V., & Marin, S. (2004). Incubation time and water activity effects on ochratoxin A production by Aspergillus section Nigri strains isolated from grapes. Letters in Applied Microbiology, 38(1), 72-77. doi:10.1046/j.1472-765x.2003.01445.x | es_ES |
dc.description.references | Bellí, N., Marín, S., Sanchis, V., & Ramos, A. J. (2006). Impact of fungicides onAspergillus carbonariusgrowth and ochratoxin A production on synthetic grape-like medium and on grapes. Food Additives and Contaminants, 23(10), 1021-1029. doi:10.1080/02652030600778702 | es_ES |
dc.description.references | Bondy, G. S., & Armstrong, C. L. (1998). Cell Biology and Toxicology, 14(5), 323-332. doi:10.1023/a:1007581606944 | es_ES |
dc.description.references | Castegnaro, M., Mohr, U., Pfohl-Leszkowicz, A., Estève, J., Steinmann, J., Tillmann, T., … Bartsch, H. (1998). Sex- and strain-specific induction of renal tumors by ochratoxin A in rats correlates with DNA adduction. International Journal of Cancer, 77(1), 70-75. doi:10.1002/(sici)1097-0215(19980703)77:1<70::aid-ijc12>3.0.co;2-d | es_ES |
dc.description.references | D’Mello, J. P. F., & Macdonald, A. M. C. (1997). Mycotoxins. Animal Feed Science and Technology, 69(1-3), 155-166. doi:10.1016/s0377-8401(97)81630-6 | es_ES |
dc.description.references | Esnoz, A., Periago, P. M., Conesa, R., & Palop, A. (2006). Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus. International Journal of Food Microbiology, 106(2), 153-158. doi:10.1016/j.ijfoodmicro.2005.06.016 | es_ES |
dc.description.references | Evans, P., Persaud, K. C., McNeish, A. S., Sneath, R. W., Hobson, N., & Magan, N. (2000). Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sensors and Actuators B: Chemical, 69(3), 348-358. doi:10.1016/s0925-4005(00)00485-8 | es_ES |
dc.description.references | Garcia-Gimeno, R. M., Hervas-Martinez, C., Sanz-Tapia, E., & Zurera-Cosano, G. (2002). Estimation of Microbial Growth Parameters by Means of Artificial Neural Networks. Food Science and Technology International, 8(2), 73-80. doi:10.1106/108201302024592 | es_ES |
dc.description.references | García-Gimeno, R. M., Hervás-Martínez, C., Rodríguez-Pérez, R., & Zurera-Cosano, G. (2005). Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks. International Journal of Food Microbiology, 105(3), 317-332. doi:10.1016/j.ijfoodmicro.2005.04.013 | es_ES |
dc.description.references | Gibson, T. D., Prosser, O., Hulbert, J. N., Marshall, R. W., Corcoran, P., Lowery, P., … Heron, S. (1997). Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. Sensors and Actuators B: Chemical, 44(1-3), 413-422. doi:10.1016/s0925-4005(97)00235-9 | es_ES |
dc.description.references | Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3), 143-151. doi:10.1016/0954-1810(94)00011-s | es_ES |
dc.description.references | Hajmeer, M. N., Basheer, I. A., & Najjar, Y. M. (1997). Computational neural networks for predictive microbiology II. Application to microbial growth. International Journal of Food Microbiology, 34(1), 51-66. doi:10.1016/s0168-1605(96)01169-5 | es_ES |
dc.description.references | Herv’s, C., Zurera, G., Garcfa, R. M., & Martinez, J. A. (2001). Optimization of Computational Neural Network for Its Application in the Prediction of Microbial Growth in Foods. Food Science and Technology International, 7(2), 159-163. doi:10.1177/108201320100700209 | es_ES |
dc.description.references | JECFA (Joint Food and Agriculture Organization of the United Nations/World Health Organization Expert Committee on Food Additives) (2001) Safety Evaluation of Certain Mycotoxins in Food. WHO Food Additives Series 47; FAO Food and Nutrition Paper 74. Available from: http://www.inchem.org/documents/jecfa/jecmono/v47je01.htm. | es_ES |
dc.description.references | Jeyamkondan, S., Jayas, D. ., & Holley, R. . (2001). Microbial growth modelling with artificial neural networks. International Journal of Food Microbiology, 64(3), 343-354. doi:10.1016/s0168-1605(00)00483-9 | es_ES |
dc.description.references | J⊘rgensen, K. (1998). Survey of pork, poultry, coffee, beer and pulses for ochratoxin A. Food Additives & Contaminants, 15(5), 550-554. doi:10.1080/02652039809374680 | es_ES |
dc.description.references | Krogh, P. (1978). Mycotoxicoses of animals. Mycopathologia, 65(1-3), 43-45. doi:10.1007/bf00447172 | es_ES |
dc.description.references | Larsen, T. O., Svendsen, A., & Smedsgaard, J. (2001). Biochemical Characterization of Ochratoxin A-Producing Strains of the Genus Penicillium. Applied and Environmental Microbiology, 67(8), 3630-3635. doi:10.1128/aem.67.8.3630-3635.2001 | es_ES |
dc.description.references | Lea, T., Steien, K., & St�rmer, F. C. (1989). Mechanism of ochratoxin A-induced immunosuppression. Mycopathologia, 107(2-3), 153-159. doi:10.1007/bf00707553 | es_ES |
dc.description.references | Leong, S. L., Hocking, A. D., & Scott, E. S. (2006). Effect of temperature and water activity on growth and ochratoxin A production by Australian Aspergillus carbonarius and A. niger isolates on a simulated grape juice medium. International Journal of Food Microbiology, 110(3), 209-216. doi:10.1016/j.ijfoodmicro.2006.04.005 | es_ES |
dc.description.references | Llorens, A., Mateo, R., Hinojo, M. J., Valle-Algarra, F. M., & Jiménez, M. (2004). Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. International Journal of Food Microbiology, 94(1), 43-54. doi:10.1016/j.ijfoodmicro.2003.12.017 | es_ES |
dc.description.references | Cerain, A. L. de, González-Peñas, E., Jiménez, A. M., & Bello, J. (2002). Contribution to the study of ochratoxin A in Spanish wines. Food Additives and Contaminants, 19(11), 1058-1064. doi:10.1080/02652030210145928 | es_ES |
dc.description.references | Lou, W., & Nakai, S. (2001). Artificial Neural Network-Based Predictive Model for Bacterial Growth in a Simulated Medium of Modified-Atmosphere-Packed Cooked Meat Products. Journal of Agricultural and Food Chemistry, 49(4), 1799-1804. doi:10.1021/jf000650m | es_ES |
dc.description.references | MacKay, D. J. C. (1992). Bayesian Interpolation. Neural Computation, 4(3), 415-447. doi:10.1162/neco.1992.4.3.415 | es_ES |
dc.description.references | MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Networks. Neural Computation, 4(3), 448-472. doi:10.1162/neco.1992.4.3.448 | es_ES |
dc.description.references | Magan, N., & Aldred, D. (2005). Conditions of formation of ochratoxin A in drying, transport and in different commodities. Food Additives & Contaminants, 22(sup1), 10-16. doi:10.1080/02652030500412154 | es_ES |
dc.description.references | Marín, S., Bellí, N., Lasram, S., Chebil, S., Ramos, A. J., Ghorbel, A., & Sanchis, V. (2006). Kinetics of Ochratoxin A Production and Accumulation by Aspergillus carbonarius on Synthetic Grape Medium at Different Temperature Levels. Journal of Food Science, 71(6), M196-M200. doi:10.1111/j.1750-3841.2006.00098.x | es_ES |
dc.description.references | Mateo, R., Medina, Á., Mateo, E. M., Mateo, F., & Jiménez, M. (2007). An overview of ochratoxin A in beer and wine. International Journal of Food Microbiology, 119(1-2), 79-83. doi:10.1016/j.ijfoodmicro.2007.07.029 | es_ES |
dc.description.references | Medina, A., Mateo, R., Lopez-Ocana, L., Valle-Algarra, F. M., & Jimenez, M. (2005). Study of Spanish Grape Mycobiota and Ochratoxin A Production by Isolates of Aspergillus tubingensis and Other Members of Aspergillus Section Nigri. Applied and Environmental Microbiology, 71(8), 4696-4702. doi:10.1128/aem.71.8.4696-4702.2005 | es_ES |
dc.description.references | Medina, Á., Mateo, R., Valle-Algarra, F. M., Mateo, E. M., & Jiménez, M. (2007). Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of Aspergillus carbonarius isolated from grapes. International Journal of Food Microbiology, 119(3), 230-235. doi:10.1016/j.ijfoodmicro.2007.07.053 | es_ES |
dc.description.references | Medina, Á., Jiménez, M., Mateo, R., & Magan, N. (2007). Efficacy of natamycin for control of growth and ochratoxin A production by Aspergillus carbonarius strains under different environmental conditions. Journal of Applied Microbiology, 103(6), 2234-2239. doi:10.1111/j.1365-2672.2007.03462.x | es_ES |
dc.description.references | Mitchell, D., Parra, R., Aldred, D., & Magan, N. (2004). Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Europe and Israel. Journal of Applied Microbiology, 97(2), 439-445. doi:10.1111/j.1365-2672.2004.02321.x | es_ES |
dc.description.references | Panagou, E. Z., & Kodogiannis, V. S. (2009). Application of neural networks as a non-linear modelling technique in food mycology. Expert Systems with Applications, 36(1), 121-131. doi:10.1016/j.eswa.2007.09.022 | es_ES |
dc.description.references | Panagou, E. Z., Kodogiannis, V., & Nychas, G. J.-E. (2007). Modelling fungal growth using radial basis function neural networks: The case of the ascomycetous fungus Monascus ruber van Tieghem. International Journal of Food Microbiology, 117(3), 276-286. doi:10.1016/j.ijfoodmicro.2007.03.010 | es_ES |
dc.description.references | Pavlou, A. K., Magan, N., Jones, J. M., Brown, J., Klatser, P., & Turner, A. P. F. (2004). Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosensors and Bioelectronics, 20(3), 538-544. doi:10.1016/j.bios.2004.03.002 | es_ES |
dc.description.references | Peraica, M., Domijan, A.-M., Matašin, M., Lucić, A., Radić, B., Delaš, F., … Grgičević, D. (2001). Variations of ochratoxin A concentration in the blood of healthy populations in some Croatian cities. Archives of Toxicology, 75(7), 410-414. doi:10.1007/s002040100258 | es_ES |
dc.description.references | Petzinger, & Ziegler. (2000). Ochratoxin A from a toxicological perspective. Journal of Veterinary Pharmacology and Therapeutics, 23(2), 91-98. doi:10.1046/j.1365-2885.2000.00244.x | es_ES |
dc.description.references | Pittet, A., & Royer, D. (2002). Rapid, Low Cost Thin-Layer Chromatographic Screening Method for the Detection of Ochratoxin A in Green Coffee at a Control Level of 10 μg/kg. Journal of Agricultural and Food Chemistry, 50(2), 243-247. doi:10.1021/jf010867w | es_ES |
dc.description.references | Poirazi, P., Leroy, F., Georgalaki, M. D., Aktypis, A., De Vuyst, L., & Tsakalidou, E. (2006). Use of Artificial Neural Networks and a Gamma-Concept-Based Approach To Model Growth of and Bacteriocin Production by Streptococcus macedonicus ACA-DC 198 under Simulated Conditions of Kasseri Cheese Production. Applied and Environmental Microbiology, 73(3), 768-776. doi:10.1128/aem.01721-06 | es_ES |
dc.description.references | Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses—An overview. International Journal of Food Microbiology, 119(1-2), 3-10. doi:10.1016/j.ijfoodmicro.2007.07.019 | es_ES |
dc.description.references | Skaug, M. A., Helland, I., Solvoll, K., & Saugstad, O. D. (2001). Presence of ochratoxin A in human milk in relation to dietary intake. Food Additives & Contaminants, 18(4), 321-327. doi:10.1080/02652030117740 | es_ES |
dc.description.references | TASSOU, C. C., NATSKOULIS, P. I., PANAGOU, E. Z., SPIROPOULOS, A. E., & MAGAN, N. (2007). Impact of Water Activity and Temperature on Growth and Ochratoxin A Production of Two Aspergillus carbonarius Isolates from Wine Grapes in Greece. Journal of Food Protection, 70(12), 2884-2888. doi:10.4315/0362-028x-70.12.2884 | es_ES |
dc.description.references | Ueno, Y., Maki, S., Lin, J., Furuya, M., Sugiura, Y., & Kawamura, O. (1998). A 4-year study of plasma ochratoxin A in a selected population in Tokyo by immunoassay and immunoaffinity column-linked HPLC. Food and Chemical Toxicology, 36(5), 445-449. doi:10.1016/s0278-6915(98)00004-0 | es_ES |
dc.description.references | VAN DER MERWE, K. J., STEYN, P. S., FOURIE, L., SCOTT, D. B., & THERON, J. J. (1965). Ochratoxin A, a Toxic Metabolite produced by Aspergillus ochraceus Wilh. Nature, 205(4976), 1112-1113. doi:10.1038/2051112a0 | es_ES |
dc.description.references | Zhao, L., Chen, Y., & Schaffner, D. W. (2001). Comparison of Logistic Regression and Linear Regression in Modeling Percentage Data. Applied and Environmental Microbiology, 67(5), 2129-2135. doi:10.1128/aem.67.5.2129-2135.2001 | es_ES |
dc.description.references | Zurera-Cosano, G., García-Gimeno, R. M., Rodríguez-Pérez, M. R., & Hervás-Martínez, C. (2005). Validating an artificial neural network model of Leuconostoc mesenteroides in vacuum packaged sliced cooked meat products for shelf-life estimation. European Food Research and Technology, 221(5), 717-724. doi:10.1007/s00217-005-0006-1 | es_ES |