- -

Predictive assessment of ochratoxin A accumulation in grape juice based-medium by Aspergillus carbonarius using neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predictive assessment of ochratoxin A accumulation in grape juice based-medium by Aspergillus carbonarius using neural networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mateo Jiménez, Fernando es_ES
dc.contributor.author Gadea Gironés, Rafael es_ES
dc.contributor.author Medina, A. es_ES
dc.contributor.author Mateo, R. es_ES
dc.contributor.author Jiménez, M. es_ES
dc.date.accessioned 2016-03-08T10:23:31Z
dc.date.available 2016-03-08T10:23:31Z
dc.date.issued 2009-09
dc.identifier.issn 1364-5072
dc.identifier.uri http://hdl.handle.net/10251/61542
dc.description.abstract Aims: To study the ability of multi-layer perceptron artificial neural networks (MLP-ANN) and radial-basis function networks (RBFNs) to predict ochratoxin A (OTA) concentration over time in grape-based cultures of Aspergillus carbonarius under different conditions of temperature, water activity (a(w)) and sub-inhibitory doses of the fungicide carbendazim. Methods and Results: A strain of A. carbonarius was cultured in a red grape juice-based medium. The input variables to the network were temperature (20-28 degrees C), a(w) (0 center dot 94-0 center dot 98), carbendazim level (0-450 ng ml(-1)) and time (3-15 days after the lag phase). The output of the ANNs was OTA level determined by liquid chromatography. Three algorithms were comparatively tested for MLP. The lowest error was obtained by MLP without validation. Performance decreased when hold-out validation was accomplished but the risk of over-fitting is also lower. The best MLP architecture was determined. RBFNs provided similar performances but a substantially higher number of hidden nodes were needed. Conclusions: ANNs are useful to predict OTA level in grape juice cultures of A. carbonarius over a range of a(w), temperature and carbendazim doses. Significance and Impact of the Study: This is a pioneering study on the application of ANNs to forecast OTA accumulation in food based substrates. These models can be similarly applied to other mycotoxins and fungal species. es_ES
dc.description.sponsorship This work was supported by the Spanish 'Ministerio de Educacion y Ciencia' (projects AGL-2004-07549-C05-02 and AGL2007-66416-C05-01 and a research grant) and the Valencian Government 'Conselleria de Empresa, Universitat i Ciencia' (project GV04B-111 and ACOMP/2007/155 and a research grant). en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Applied Microbiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Aspergillus carbonarius es_ES
dc.subject Grape-based products es_ES
dc.subject Mycotoxigenic fungi es_ES
dc.subject Mycotoxins es_ES
dc.subject Neural networks es_ES
dc.subject Ochratoxin A es_ES
dc.subject Predictive mycology es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Predictive assessment of ochratoxin A accumulation in grape juice based-medium by Aspergillus carbonarius using neural networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1365-2672.2009.04264.x
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AGL2004-07549-C05-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AGL2007-66416-C05-01/ES/PRESENCIA SIMULTANEA DE MICOTOXINAS EN ALIMENTOS. EVALUACION DEL PELIGRO POTENCIAL Y REAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV04B-111/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2007%2F155/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Mateo Jiménez, F.; Gadea Gironés, R.; Medina, A.; Mateo, R.; Jiménez, M. (2009). Predictive assessment of ochratoxin A accumulation in grape juice based-medium by Aspergillus carbonarius using neural networks. Journal of Applied Microbiology. 107(3):915-927. https://doi.org/10.1111/j.1365-2672.2009.04264.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/j.1365-2672.2009.04264.x es_ES
dc.description.upvformatpinicio 915 es_ES
dc.description.upvformatpfin 927 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 107 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 39546 es_ES
dc.identifier.eissn 1365-2672
dc.identifier.pmid 19486411
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Battilani, P., Magan, N., & Logrieco, A. (2006). European research on ochratoxin A in grapes and wine. International Journal of Food Microbiology, 111, S2-S4. doi:10.1016/j.ijfoodmicro.2006.02.007 es_ES
dc.description.references Belli, N., Ramos, A. J., Sanchis, V., & Marin, S. (2004). Incubation time and water activity effects on ochratoxin A production by Aspergillus section Nigri strains isolated from grapes. Letters in Applied Microbiology, 38(1), 72-77. doi:10.1046/j.1472-765x.2003.01445.x es_ES
dc.description.references Bellí, N., Marín, S., Sanchis, V., & Ramos, A. J. (2006). Impact of fungicides onAspergillus carbonariusgrowth and ochratoxin A production on synthetic grape-like medium and on grapes. Food Additives and Contaminants, 23(10), 1021-1029. doi:10.1080/02652030600778702 es_ES
dc.description.references Bondy, G. S., & Armstrong, C. L. (1998). Cell Biology and Toxicology, 14(5), 323-332. doi:10.1023/a:1007581606944 es_ES
dc.description.references Castegnaro, M., Mohr, U., Pfohl-Leszkowicz, A., Estève, J., Steinmann, J., Tillmann, T., … Bartsch, H. (1998). Sex- and strain-specific induction of renal tumors by ochratoxin A in rats correlates with DNA adduction. International Journal of Cancer, 77(1), 70-75. doi:10.1002/(sici)1097-0215(19980703)77:1<70::aid-ijc12>3.0.co;2-d es_ES
dc.description.references D’Mello, J. P. F., & Macdonald, A. M. C. (1997). Mycotoxins. Animal Feed Science and Technology, 69(1-3), 155-166. doi:10.1016/s0377-8401(97)81630-6 es_ES
dc.description.references Esnoz, A., Periago, P. M., Conesa, R., & Palop, A. (2006). Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus. International Journal of Food Microbiology, 106(2), 153-158. doi:10.1016/j.ijfoodmicro.2005.06.016 es_ES
dc.description.references Evans, P., Persaud, K. C., McNeish, A. S., Sneath, R. W., Hobson, N., & Magan, N. (2000). Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sensors and Actuators B: Chemical, 69(3), 348-358. doi:10.1016/s0925-4005(00)00485-8 es_ES
dc.description.references Garcia-Gimeno, R. M., Hervas-Martinez, C., Sanz-Tapia, E., & Zurera-Cosano, G. (2002). Estimation of Microbial Growth Parameters by Means of Artificial Neural Networks. Food Science and Technology International, 8(2), 73-80. doi:10.1106/108201302024592 es_ES
dc.description.references García-Gimeno, R. M., Hervás-Martínez, C., Rodríguez-Pérez, R., & Zurera-Cosano, G. (2005). Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks. International Journal of Food Microbiology, 105(3), 317-332. doi:10.1016/j.ijfoodmicro.2005.04.013 es_ES
dc.description.references Gibson, T. D., Prosser, O., Hulbert, J. N., Marshall, R. W., Corcoran, P., Lowery, P., … Heron, S. (1997). Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. Sensors and Actuators B: Chemical, 44(1-3), 413-422. doi:10.1016/s0925-4005(97)00235-9 es_ES
dc.description.references Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3), 143-151. doi:10.1016/0954-1810(94)00011-s es_ES
dc.description.references Hajmeer, M. N., Basheer, I. A., & Najjar, Y. M. (1997). Computational neural networks for predictive microbiology II. Application to microbial growth. International Journal of Food Microbiology, 34(1), 51-66. doi:10.1016/s0168-1605(96)01169-5 es_ES
dc.description.references Herv’s, C., Zurera, G., Garcfa, R. M., & Martinez, J. A. (2001). Optimization of Computational Neural Network for Its Application in the Prediction of Microbial Growth in Foods. Food Science and Technology International, 7(2), 159-163. doi:10.1177/108201320100700209 es_ES
dc.description.references JECFA (Joint Food and Agriculture Organization of the United Nations/World Health Organization Expert Committee on Food Additives) (2001) Safety Evaluation of Certain Mycotoxins in Food. WHO Food Additives Series 47; FAO Food and Nutrition Paper 74. Available from: http://www.inchem.org/documents/jecfa/jecmono/v47je01.htm. es_ES
dc.description.references Jeyamkondan, S., Jayas, D. ., & Holley, R. . (2001). Microbial growth modelling with artificial neural networks. International Journal of Food Microbiology, 64(3), 343-354. doi:10.1016/s0168-1605(00)00483-9 es_ES
dc.description.references J⊘rgensen, K. (1998). Survey of pork, poultry, coffee, beer and pulses for ochratoxin A. Food Additives & Contaminants, 15(5), 550-554. doi:10.1080/02652039809374680 es_ES
dc.description.references Krogh, P. (1978). Mycotoxicoses of animals. Mycopathologia, 65(1-3), 43-45. doi:10.1007/bf00447172 es_ES
dc.description.references Larsen, T. O., Svendsen, A., & Smedsgaard, J. (2001). Biochemical Characterization of Ochratoxin A-Producing Strains of the Genus Penicillium. Applied and Environmental Microbiology, 67(8), 3630-3635. doi:10.1128/aem.67.8.3630-3635.2001 es_ES
dc.description.references Lea, T., Steien, K., & St�rmer, F. C. (1989). Mechanism of ochratoxin A-induced immunosuppression. Mycopathologia, 107(2-3), 153-159. doi:10.1007/bf00707553 es_ES
dc.description.references Leong, S. L., Hocking, A. D., & Scott, E. S. (2006). Effect of temperature and water activity on growth and ochratoxin A production by Australian Aspergillus carbonarius and A. niger isolates on a simulated grape juice medium. International Journal of Food Microbiology, 110(3), 209-216. doi:10.1016/j.ijfoodmicro.2006.04.005 es_ES
dc.description.references Llorens, A., Mateo, R., Hinojo, M. J., Valle-Algarra, F. M., & Jiménez, M. (2004). Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. International Journal of Food Microbiology, 94(1), 43-54. doi:10.1016/j.ijfoodmicro.2003.12.017 es_ES
dc.description.references Cerain, A. L. de, González-Peñas, E., Jiménez, A. M., & Bello, J. (2002). Contribution to the study of ochratoxin A in Spanish wines. Food Additives and Contaminants, 19(11), 1058-1064. doi:10.1080/02652030210145928 es_ES
dc.description.references Lou, W., & Nakai, S. (2001). Artificial Neural Network-Based Predictive Model for Bacterial Growth in a Simulated Medium of Modified-Atmosphere-Packed Cooked Meat Products. Journal of Agricultural and Food Chemistry, 49(4), 1799-1804. doi:10.1021/jf000650m es_ES
dc.description.references MacKay, D. J. C. (1992). Bayesian Interpolation. Neural Computation, 4(3), 415-447. doi:10.1162/neco.1992.4.3.415 es_ES
dc.description.references MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Networks. Neural Computation, 4(3), 448-472. doi:10.1162/neco.1992.4.3.448 es_ES
dc.description.references Magan, N., & Aldred, D. (2005). Conditions of formation of ochratoxin A in drying, transport and in different commodities. Food Additives & Contaminants, 22(sup1), 10-16. doi:10.1080/02652030500412154 es_ES
dc.description.references Marín, S., Bellí, N., Lasram, S., Chebil, S., Ramos, A. J., Ghorbel, A., & Sanchis, V. (2006). Kinetics of Ochratoxin A Production and Accumulation by Aspergillus carbonarius on Synthetic Grape Medium at Different Temperature Levels. Journal of Food Science, 71(6), M196-M200. doi:10.1111/j.1750-3841.2006.00098.x es_ES
dc.description.references Mateo, R., Medina, Á., Mateo, E. M., Mateo, F., & Jiménez, M. (2007). An overview of ochratoxin A in beer and wine. International Journal of Food Microbiology, 119(1-2), 79-83. doi:10.1016/j.ijfoodmicro.2007.07.029 es_ES
dc.description.references Medina, A., Mateo, R., Lopez-Ocana, L., Valle-Algarra, F. M., & Jimenez, M. (2005). Study of Spanish Grape Mycobiota and Ochratoxin A Production by Isolates of Aspergillus tubingensis and Other Members of Aspergillus Section Nigri. Applied and Environmental Microbiology, 71(8), 4696-4702. doi:10.1128/aem.71.8.4696-4702.2005 es_ES
dc.description.references Medina, Á., Mateo, R., Valle-Algarra, F. M., Mateo, E. M., & Jiménez, M. (2007). Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of Aspergillus carbonarius isolated from grapes. International Journal of Food Microbiology, 119(3), 230-235. doi:10.1016/j.ijfoodmicro.2007.07.053 es_ES
dc.description.references Medina, Á., Jiménez, M., Mateo, R., & Magan, N. (2007). Efficacy of natamycin for control of growth and ochratoxin A production by Aspergillus carbonarius strains under different environmental conditions. Journal of Applied Microbiology, 103(6), 2234-2239. doi:10.1111/j.1365-2672.2007.03462.x es_ES
dc.description.references Mitchell, D., Parra, R., Aldred, D., & Magan, N. (2004). Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Europe and Israel. Journal of Applied Microbiology, 97(2), 439-445. doi:10.1111/j.1365-2672.2004.02321.x es_ES
dc.description.references Panagou, E. Z., & Kodogiannis, V. S. (2009). Application of neural networks as a non-linear modelling technique in food mycology. Expert Systems with Applications, 36(1), 121-131. doi:10.1016/j.eswa.2007.09.022 es_ES
dc.description.references Panagou, E. Z., Kodogiannis, V., & Nychas, G. J.-E. (2007). Modelling fungal growth using radial basis function neural networks: The case of the ascomycetous fungus Monascus ruber van Tieghem. International Journal of Food Microbiology, 117(3), 276-286. doi:10.1016/j.ijfoodmicro.2007.03.010 es_ES
dc.description.references Pavlou, A. K., Magan, N., Jones, J. M., Brown, J., Klatser, P., & Turner, A. P. F. (2004). Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosensors and Bioelectronics, 20(3), 538-544. doi:10.1016/j.bios.2004.03.002 es_ES
dc.description.references Peraica, M., Domijan, A.-M., Matašin, M., Lucić, A., Radić, B., Delaš, F., … Grgičević, D. (2001). Variations of ochratoxin A concentration in the blood of healthy populations in some Croatian cities. Archives of Toxicology, 75(7), 410-414. doi:10.1007/s002040100258 es_ES
dc.description.references Petzinger, & Ziegler. (2000). Ochratoxin A from a toxicological perspective. Journal of Veterinary Pharmacology and Therapeutics, 23(2), 91-98. doi:10.1046/j.1365-2885.2000.00244.x es_ES
dc.description.references Pittet, A., & Royer, D. (2002). Rapid, Low Cost Thin-Layer Chromatographic Screening Method for the Detection of Ochratoxin A in Green Coffee at a Control Level of 10 μg/kg. Journal of Agricultural and Food Chemistry, 50(2), 243-247. doi:10.1021/jf010867w es_ES
dc.description.references Poirazi, P., Leroy, F., Georgalaki, M. D., Aktypis, A., De Vuyst, L., & Tsakalidou, E. (2006). Use of Artificial Neural Networks and a Gamma-Concept-Based Approach To Model Growth of and Bacteriocin Production by Streptococcus macedonicus ACA-DC 198 under Simulated Conditions of Kasseri Cheese Production. Applied and Environmental Microbiology, 73(3), 768-776. doi:10.1128/aem.01721-06 es_ES
dc.description.references Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses—An overview. International Journal of Food Microbiology, 119(1-2), 3-10. doi:10.1016/j.ijfoodmicro.2007.07.019 es_ES
dc.description.references Skaug, M. A., Helland, I., Solvoll, K., & Saugstad, O. D. (2001). Presence of ochratoxin A in human milk in relation to dietary intake. Food Additives & Contaminants, 18(4), 321-327. doi:10.1080/02652030117740 es_ES
dc.description.references TASSOU, C. C., NATSKOULIS, P. I., PANAGOU, E. Z., SPIROPOULOS, A. E., & MAGAN, N. (2007). Impact of Water Activity and Temperature on Growth and Ochratoxin A Production of Two Aspergillus carbonarius Isolates from Wine Grapes in Greece. Journal of Food Protection, 70(12), 2884-2888. doi:10.4315/0362-028x-70.12.2884 es_ES
dc.description.references Ueno, Y., Maki, S., Lin, J., Furuya, M., Sugiura, Y., & Kawamura, O. (1998). A 4-year study of plasma ochratoxin A in a selected population in Tokyo by immunoassay and immunoaffinity column-linked HPLC. Food and Chemical Toxicology, 36(5), 445-449. doi:10.1016/s0278-6915(98)00004-0 es_ES
dc.description.references VAN DER MERWE, K. J., STEYN, P. S., FOURIE, L., SCOTT, D. B., & THERON, J. J. (1965). Ochratoxin A, a Toxic Metabolite produced by Aspergillus ochraceus Wilh. Nature, 205(4976), 1112-1113. doi:10.1038/2051112a0 es_ES
dc.description.references Zhao, L., Chen, Y., & Schaffner, D. W. (2001). Comparison of Logistic Regression and Linear Regression in Modeling Percentage Data. Applied and Environmental Microbiology, 67(5), 2129-2135. doi:10.1128/aem.67.5.2129-2135.2001 es_ES
dc.description.references Zurera-Cosano, G., García-Gimeno, R. M., Rodríguez-Pérez, M. R., & Hervás-Martínez, C. (2005). Validating an artificial neural network model of Leuconostoc mesenteroides in vacuum packaged sliced cooked meat products for shelf-life estimation. European Food Research and Technology, 221(5), 717-724. doi:10.1007/s00217-005-0006-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem