Battilani, P., Magan, N., & Logrieco, A. (2006). European research on ochratoxin A in grapes and wine. International Journal of Food Microbiology, 111, S2-S4. doi:10.1016/j.ijfoodmicro.2006.02.007
Belli, N., Ramos, A. J., Sanchis, V., & Marin, S. (2004). Incubation time and water activity effects on ochratoxin A production by Aspergillus section Nigri strains isolated from grapes. Letters in Applied Microbiology, 38(1), 72-77. doi:10.1046/j.1472-765x.2003.01445.x
Bellí, N., Marín, S., Sanchis, V., & Ramos, A. J. (2006). Impact of fungicides onAspergillus carbonariusgrowth and ochratoxin A production on synthetic grape-like medium and on grapes. Food Additives and Contaminants, 23(10), 1021-1029. doi:10.1080/02652030600778702
[+]
Battilani, P., Magan, N., & Logrieco, A. (2006). European research on ochratoxin A in grapes and wine. International Journal of Food Microbiology, 111, S2-S4. doi:10.1016/j.ijfoodmicro.2006.02.007
Belli, N., Ramos, A. J., Sanchis, V., & Marin, S. (2004). Incubation time and water activity effects on ochratoxin A production by Aspergillus section Nigri strains isolated from grapes. Letters in Applied Microbiology, 38(1), 72-77. doi:10.1046/j.1472-765x.2003.01445.x
Bellí, N., Marín, S., Sanchis, V., & Ramos, A. J. (2006). Impact of fungicides onAspergillus carbonariusgrowth and ochratoxin A production on synthetic grape-like medium and on grapes. Food Additives and Contaminants, 23(10), 1021-1029. doi:10.1080/02652030600778702
Bondy, G. S., & Armstrong, C. L. (1998). Cell Biology and Toxicology, 14(5), 323-332. doi:10.1023/a:1007581606944
Castegnaro, M., Mohr, U., Pfohl-Leszkowicz, A., Estève, J., Steinmann, J., Tillmann, T., … Bartsch, H. (1998). Sex- and strain-specific induction of renal tumors by ochratoxin A in rats correlates with DNA adduction. International Journal of Cancer, 77(1), 70-75. doi:10.1002/(sici)1097-0215(19980703)77:1<70::aid-ijc12>3.0.co;2-d
D’Mello, J. P. F., & Macdonald, A. M. C. (1997). Mycotoxins. Animal Feed Science and Technology, 69(1-3), 155-166. doi:10.1016/s0377-8401(97)81630-6
Esnoz, A., Periago, P. M., Conesa, R., & Palop, A. (2006). Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus. International Journal of Food Microbiology, 106(2), 153-158. doi:10.1016/j.ijfoodmicro.2005.06.016
Evans, P., Persaud, K. C., McNeish, A. S., Sneath, R. W., Hobson, N., & Magan, N. (2000). Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sensors and Actuators B: Chemical, 69(3), 348-358. doi:10.1016/s0925-4005(00)00485-8
Garcia-Gimeno, R. M., Hervas-Martinez, C., Sanz-Tapia, E., & Zurera-Cosano, G. (2002). Estimation of Microbial Growth Parameters by Means of Artificial Neural Networks. Food Science and Technology International, 8(2), 73-80. doi:10.1106/108201302024592
García-Gimeno, R. M., Hervás-Martínez, C., Rodríguez-Pérez, R., & Zurera-Cosano, G. (2005). Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks. International Journal of Food Microbiology, 105(3), 317-332. doi:10.1016/j.ijfoodmicro.2005.04.013
Gibson, T. D., Prosser, O., Hulbert, J. N., Marshall, R. W., Corcoran, P., Lowery, P., … Heron, S. (1997). Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. Sensors and Actuators B: Chemical, 44(1-3), 413-422. doi:10.1016/s0925-4005(97)00235-9
Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3), 143-151. doi:10.1016/0954-1810(94)00011-s
Hajmeer, M. N., Basheer, I. A., & Najjar, Y. M. (1997). Computational neural networks for predictive microbiology II. Application to microbial growth. International Journal of Food Microbiology, 34(1), 51-66. doi:10.1016/s0168-1605(96)01169-5
Herv’s, C., Zurera, G., Garcfa, R. M., & Martinez, J. A. (2001). Optimization of Computational Neural Network for Its Application in the Prediction of Microbial Growth in Foods. Food Science and Technology International, 7(2), 159-163. doi:10.1177/108201320100700209
JECFA (Joint Food and Agriculture Organization of the United Nations/World Health Organization Expert Committee on Food Additives) (2001) Safety Evaluation of Certain Mycotoxins in Food. WHO Food Additives Series 47; FAO Food and Nutrition Paper 74. Available from: http://www.inchem.org/documents/jecfa/jecmono/v47je01.htm.
Jeyamkondan, S., Jayas, D. ., & Holley, R. . (2001). Microbial growth modelling with artificial neural networks. International Journal of Food Microbiology, 64(3), 343-354. doi:10.1016/s0168-1605(00)00483-9
J⊘rgensen, K. (1998). Survey of pork, poultry, coffee, beer and pulses for ochratoxin A. Food Additives & Contaminants, 15(5), 550-554. doi:10.1080/02652039809374680
Krogh, P. (1978). Mycotoxicoses of animals. Mycopathologia, 65(1-3), 43-45. doi:10.1007/bf00447172
Larsen, T. O., Svendsen, A., & Smedsgaard, J. (2001). Biochemical Characterization of Ochratoxin A-Producing Strains of the Genus Penicillium. Applied and Environmental Microbiology, 67(8), 3630-3635. doi:10.1128/aem.67.8.3630-3635.2001
Lea, T., Steien, K., & St�rmer, F. C. (1989). Mechanism of ochratoxin A-induced immunosuppression. Mycopathologia, 107(2-3), 153-159. doi:10.1007/bf00707553
Leong, S. L., Hocking, A. D., & Scott, E. S. (2006). Effect of temperature and water activity on growth and ochratoxin A production by Australian Aspergillus carbonarius and A. niger isolates on a simulated grape juice medium. International Journal of Food Microbiology, 110(3), 209-216. doi:10.1016/j.ijfoodmicro.2006.04.005
Llorens, A., Mateo, R., Hinojo, M. J., Valle-Algarra, F. M., & Jiménez, M. (2004). Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. International Journal of Food Microbiology, 94(1), 43-54. doi:10.1016/j.ijfoodmicro.2003.12.017
Cerain, A. L. de, González-Peñas, E., Jiménez, A. M., & Bello, J. (2002). Contribution to the study of ochratoxin A in Spanish wines. Food Additives and Contaminants, 19(11), 1058-1064. doi:10.1080/02652030210145928
Lou, W., & Nakai, S. (2001). Artificial Neural Network-Based Predictive Model for Bacterial Growth in a Simulated Medium of Modified-Atmosphere-Packed Cooked Meat Products. Journal of Agricultural and Food Chemistry, 49(4), 1799-1804. doi:10.1021/jf000650m
MacKay, D. J. C. (1992). Bayesian Interpolation. Neural Computation, 4(3), 415-447. doi:10.1162/neco.1992.4.3.415
MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Networks. Neural Computation, 4(3), 448-472. doi:10.1162/neco.1992.4.3.448
Magan, N., & Aldred, D. (2005). Conditions of formation of ochratoxin A in drying, transport and in different commodities. Food Additives & Contaminants, 22(sup1), 10-16. doi:10.1080/02652030500412154
Marín, S., Bellí, N., Lasram, S., Chebil, S., Ramos, A. J., Ghorbel, A., & Sanchis, V. (2006). Kinetics of Ochratoxin A Production and Accumulation by Aspergillus carbonarius on Synthetic Grape Medium at Different Temperature Levels. Journal of Food Science, 71(6), M196-M200. doi:10.1111/j.1750-3841.2006.00098.x
Mateo, R., Medina, Á., Mateo, E. M., Mateo, F., & Jiménez, M. (2007). An overview of ochratoxin A in beer and wine. International Journal of Food Microbiology, 119(1-2), 79-83. doi:10.1016/j.ijfoodmicro.2007.07.029
Medina, A., Mateo, R., Lopez-Ocana, L., Valle-Algarra, F. M., & Jimenez, M. (2005). Study of Spanish Grape Mycobiota and Ochratoxin A Production by Isolates of Aspergillus tubingensis and Other Members of Aspergillus Section Nigri. Applied and Environmental Microbiology, 71(8), 4696-4702. doi:10.1128/aem.71.8.4696-4702.2005
Medina, Á., Mateo, R., Valle-Algarra, F. M., Mateo, E. M., & Jiménez, M. (2007). Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of Aspergillus carbonarius isolated from grapes. International Journal of Food Microbiology, 119(3), 230-235. doi:10.1016/j.ijfoodmicro.2007.07.053
Medina, Á., Jiménez, M., Mateo, R., & Magan, N. (2007). Efficacy of natamycin for control of growth and ochratoxin A production by Aspergillus carbonarius strains under different environmental conditions. Journal of Applied Microbiology, 103(6), 2234-2239. doi:10.1111/j.1365-2672.2007.03462.x
Mitchell, D., Parra, R., Aldred, D., & Magan, N. (2004). Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Europe and Israel. Journal of Applied Microbiology, 97(2), 439-445. doi:10.1111/j.1365-2672.2004.02321.x
Panagou, E. Z., & Kodogiannis, V. S. (2009). Application of neural networks as a non-linear modelling technique in food mycology. Expert Systems with Applications, 36(1), 121-131. doi:10.1016/j.eswa.2007.09.022
Panagou, E. Z., Kodogiannis, V., & Nychas, G. J.-E. (2007). Modelling fungal growth using radial basis function neural networks: The case of the ascomycetous fungus Monascus ruber van Tieghem. International Journal of Food Microbiology, 117(3), 276-286. doi:10.1016/j.ijfoodmicro.2007.03.010
Pavlou, A. K., Magan, N., Jones, J. M., Brown, J., Klatser, P., & Turner, A. P. F. (2004). Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosensors and Bioelectronics, 20(3), 538-544. doi:10.1016/j.bios.2004.03.002
Peraica, M., Domijan, A.-M., Matašin, M., Lucić, A., Radić, B., Delaš, F., … Grgičević, D. (2001). Variations of ochratoxin A concentration in the blood of healthy populations in some Croatian cities. Archives of Toxicology, 75(7), 410-414. doi:10.1007/s002040100258
Petzinger, & Ziegler. (2000). Ochratoxin A from a toxicological perspective. Journal of Veterinary Pharmacology and Therapeutics, 23(2), 91-98. doi:10.1046/j.1365-2885.2000.00244.x
Pittet, A., & Royer, D. (2002). Rapid, Low Cost Thin-Layer Chromatographic Screening Method for the Detection of Ochratoxin A in Green Coffee at a Control Level of 10 μg/kg. Journal of Agricultural and Food Chemistry, 50(2), 243-247. doi:10.1021/jf010867w
Poirazi, P., Leroy, F., Georgalaki, M. D., Aktypis, A., De Vuyst, L., & Tsakalidou, E. (2006). Use of Artificial Neural Networks and a Gamma-Concept-Based Approach To Model Growth of and Bacteriocin Production by Streptococcus macedonicus ACA-DC 198 under Simulated Conditions of Kasseri Cheese Production. Applied and Environmental Microbiology, 73(3), 768-776. doi:10.1128/aem.01721-06
Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses—An overview. International Journal of Food Microbiology, 119(1-2), 3-10. doi:10.1016/j.ijfoodmicro.2007.07.019
Skaug, M. A., Helland, I., Solvoll, K., & Saugstad, O. D. (2001). Presence of ochratoxin A in human milk in relation to dietary intake. Food Additives & Contaminants, 18(4), 321-327. doi:10.1080/02652030117740
TASSOU, C. C., NATSKOULIS, P. I., PANAGOU, E. Z., SPIROPOULOS, A. E., & MAGAN, N. (2007). Impact of Water Activity and Temperature on Growth and Ochratoxin A Production of Two Aspergillus carbonarius Isolates from Wine Grapes in Greece. Journal of Food Protection, 70(12), 2884-2888. doi:10.4315/0362-028x-70.12.2884
Ueno, Y., Maki, S., Lin, J., Furuya, M., Sugiura, Y., & Kawamura, O. (1998). A 4-year study of plasma ochratoxin A in a selected population in Tokyo by immunoassay and immunoaffinity column-linked HPLC. Food and Chemical Toxicology, 36(5), 445-449. doi:10.1016/s0278-6915(98)00004-0
VAN DER MERWE, K. J., STEYN, P. S., FOURIE, L., SCOTT, D. B., & THERON, J. J. (1965). Ochratoxin A, a Toxic Metabolite produced by Aspergillus ochraceus Wilh. Nature, 205(4976), 1112-1113. doi:10.1038/2051112a0
Zhao, L., Chen, Y., & Schaffner, D. W. (2001). Comparison of Logistic Regression and Linear Regression in Modeling Percentage Data. Applied and Environmental Microbiology, 67(5), 2129-2135. doi:10.1128/aem.67.5.2129-2135.2001
Zurera-Cosano, G., García-Gimeno, R. M., Rodríguez-Pérez, M. R., & Hervás-Martínez, C. (2005). Validating an artificial neural network model of Leuconostoc mesenteroides in vacuum packaged sliced cooked meat products for shelf-life estimation. European Food Research and Technology, 221(5), 717-724. doi:10.1007/s00217-005-0006-1
[-]