- -

A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato

Show full item record

Lisón Párraga, MP.; Tarraga Herrero, S.; López Gresa, MP.; Sauri Ferrando, A.; Torres Vidal, C.; Campos Beneyto, L.; Belles Albert, JM.... (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. Proteomics. 13(5):833-844. doi:10.1002/pmic.201200286

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61835

Files in this item

Item Metadata

Title: A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Viroids are single-stranded, circular, noncoding RNAs that infect plants, causing devastating diseases. In this work, we employed 2D DIGE, followed by MS identification, to analyze the response of tomato plants infected ...[+]
Subjects: 2D DIGE , Plant stress , Tomato , Translation factors , Viroid
Copyrigths: Reserva de todos los derechos
Proteomics. (issn: 1615-9853 )
DOI: 10.1002/pmic.201200286
Publisher version: http://dx.doi.org/10.1002/pmic.201200286
Description: This is the accepted version of the following article: Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., Bellés, J. M., Conejero, V. and Rodrigo, I. (2013), A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. Proteomics, 13: 833–844, which has been published in final form at http://dx.doi.org/10.1002/pmic.201200286.
We would like to thank the Proteomic Service of the IBMCP (Instituto de Biologia Molecular y Celular de Plantas, Valencia, Spain) for the technical assistance. We also thank Dr. Alejandro Ferrando (Instituto de Biologia ...[+]
Type: Artículo


Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Ding, B., & Itaya, A. (2007). Viroid: A Useful Model for Studying the Basic Principles of Infection and RNA Biology. Molecular Plant-Microbe Interactions, 20(1), 7-20. doi:10.1094/mpmi-20-0007

Ding, B., Kwon, M.-O., Hammond, R., & Owens, R. (1997). Cell-to-cell movement of potato spindle tuber viroid. The Plant Journal, 12(4), 931-936. doi:10.1046/j.1365-313x.1997.12040931.x [+]
Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Ding, B., & Itaya, A. (2007). Viroid: A Useful Model for Studying the Basic Principles of Infection and RNA Biology. Molecular Plant-Microbe Interactions, 20(1), 7-20. doi:10.1094/mpmi-20-0007

Ding, B., Kwon, M.-O., Hammond, R., & Owens, R. (1997). Cell-to-cell movement of potato spindle tuber viroid. The Plant Journal, 12(4), 931-936. doi:10.1046/j.1365-313x.1997.12040931.x

Zhu, Y., Green, L., Woo, Y.-M., Owens, R., & Ding, B. (2001). Cellular Basis of Potato Spindle Tuber Viroid Systemic Movement. Virology, 279(1), 69-77. doi:10.1006/viro.2000.0724

Qi, Y., Pélissier, T., Itaya, A., Hunt, E., Wassenegger, M., & Ding, B. (2004). Direct Role of a Viroid RNA Motif in Mediating Directional RNA Trafficking across a Specific Cellular Boundary. The Plant Cell, 16(7), 1741-1752. doi:10.1105/tpc.021980

Flores, R., Grubb, D., Elleuch, A., Nohales, M.-Á., Delgado, S., & Gago, S. (2011). Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme. RNA Biology, 8(2), 200-206. doi:10.4161/rna.8.2.14238

Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927

Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7

Vera, P., & Conejero, V. (1988). Pathogenesis-Related Proteins of Tomato. Plant Physiology, 87(1), 58-63. doi:10.1104/pp.87.1.58

Breijo, F. J. G., Garro, R., & Conejero, V. (1990). C7(P32) and C6(P34) PR proteins induced in tomato leaves by citrus exocortis viroid infection are chitinases. Physiological and Molecular Plant Pathology, 36(3), 249-260. doi:10.1016/0885-5765(90)90029-w

Domingo, C., Conejero, V., & Vera, P. (1994). Genes encoding acidic and basic class III ?-1,3-glucanases are expressed in tomato plants upon viroid infection. Plant Molecular Biology, 24(5), 725-732. doi:10.1007/bf00029854

Bellés, J. M., Granell, A., Durán-vila, N., & Conejero, V. (1989). ACC Synthesis as the Activated Step Responsible for the Rise of Ethylene Production Accompanying Citrus Exocortis Viroid Infection in Tomato Plants. Journal of Phytopathology, 125(3), 198-208. doi:10.1111/j.1439-0434.1989.tb01061.x

Belles, J. M., Perez-Amador, M. A., Carbonell, J., & Conejero, V. (1993). Correlation between Ornithine Decarboxylase and Putrescine in Tomato Plants Infected by Citrus Exocortis Viroid or Treated with Ethephon. Plant Physiology, 102(3), 933-937. doi:10.1104/pp.102.3.933

Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227

Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014

Tárraga, S., Lisón, P., López-Gresa, M. P., Torres, C., Rodrigo, I., Bellés, J. M., & Conejero, V. (2010). Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. Journal of Experimental Botany, 61(15), 4325-4338. doi:10.1093/jxb/erq234

Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8

López-Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). Metabolic response of tomato leaves upon different plantâ pathogen interactions. Phytochemical Analysis, 21(1), 89-94. doi:10.1002/pca.1179

Eggert, K., & Pawelzik, E. (2011). Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum). PROTEOMICS, 11(5), 972-985. doi:10.1002/pmic.201000322

Li, Y., Zhang, Z., Nie, Y., Zhang, L., & Wang, Z. (2012). Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice. PROTEOMICS, 12(14), 2340-2354. doi:10.1002/pmic.201200054

Xu, Q.-F., Cheng, W.-S., Li, S.-S., Li, W., Zhang, Z.-X., Xu, Y.-P., … Cai, X.-Z. (2012). Identification of genes required for Cf-dependent hypersensitive cell death by combined proteomic and RNA interfering analyses. Journal of Experimental Botany, 63(7), 2421-2435. doi:10.1093/jxb/err397

Castillejo, M. Á., Fernández-Aparicio, M., & Rubiales, D. (2011). Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. Journal of Experimental Botany, 63(1), 107-119. doi:10.1093/jxb/err246

Badillo-Vargas, I. E., Rotenberg, D., Schneweis, D. J., Hiromasa, Y., Tomich, J. M., & Whitfield, A. E. (2012). Proteomic Analysis of Frankliniella occidentalis and Differentially Expressed Proteins in Response toTomato Spotted Wilt VirusInfection. Journal of Virology, 86(16), 8793-8809. doi:10.1128/jvi.00285-12

Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053

Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., … Mann, M. (1996). Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences, 93(25), 14440-14445. doi:10.1073/pnas.93.25.14440

Varó, I., Rigos, G., Navarro, J. C., del Ramo, J., Calduch-Giner, J., Hernández, A., … Torreblanca, A. (2010). Effect of ivermectin on the liver of gilthead sea bream Sparus aurata: A proteomic approach. Chemosphere, 80(5), 570-577. doi:10.1016/j.chemosphere.2010.04.030

Pauwels, K., Sanchez del Pino, M. M., Feller, G., & Van Gelder, P. (2012). Decoding the Folding of Burkholderia glumae Lipase: Folding Intermediates En Route to Kinetic Stability. PLoS ONE, 7(5), e36999. doi:10.1371/journal.pone.0036999

Dube, A., Bisaillon, M., & Perreault, J.-P. (2009). Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid. Journal of Virology, 83(23), 12057-12067. doi:10.1128/jvi.01151-09

Rodrigo, I., Vera, P., Frank, R., & Conejero, V. (1991). Identification of the viroid-induced tomato pathogenesis-related (PR) protein P23 as the thaumatin-like tomato protein NP24 associated with osmotic stress. Plant Molecular Biology, 16(5), 931-934. doi:10.1007/bf00015088

Tornero, P., Gadea, J., Conejero, V., & Vera, P. (1997). TwoPR-1Genes from Tomato Are Differentially Regulated and Reveal a Novel Mode of Expression for a Pathogenesis-Related Gene During the Hypersensitive Response and Development. Molecular Plant-Microbe Interactions, 10(5), 624-634. doi:10.1094/mpmi.1997.10.5.624

Takeda, R., & Ding, B. (2009). Viroid Intercellular Trafficking: RNA Motifs, Cellular Factors and Broad Impacts. Viruses, 1(2), 210-221. doi:10.3390/v1020210

Kavroulakis, N., Ntougias, S., Zervakis, G. I., Ehaliotis, C., Haralampidis, K., & Papadopoulou, K. K. (2007). Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. Journal of Experimental Botany, 58(14), 3853-3864. doi:10.1093/jxb/erm230

Larson, R. L., Hill, A. L., & Nuñez, A. (2007). Characterization of Protein Changes Associated with Sugar Beet (Beta vulgaris) Resistance and Susceptibility toFusarium oxysporum. Journal of Agricultural and Food Chemistry, 55(19), 7905-7915. doi:10.1021/jf070876q

Swoboda, I., Hoffmann-Sommergruber, K., O’Riordain, G., Scheiner, O., Heberle-Bors, E., & Vicente, O. (1996). Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiologia Plantarum, 96(3), 433-438. doi:10.1111/j.1399-3054.1996.tb00455.x

Zhou, X.-J., Lu, S., Xu, Y.-H., Wang, J.-W., & Chen, X.-Y. (2002). A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Science, 162(4), 629-636. doi:10.1016/s0168-9452(02)00002-x

Park, C.-J., Kim, K.-J., Shin, R., Park, J. M., Shin, Y.-C., & Paek, K.-H. (2003). Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal, 37(2), 186-198. doi:10.1046/j.1365-313x.2003.01951.x

Chen, Z.-Y., Brown, R. L., Rajasekaran, K., Damann, K. E., & Cleveland, T. E. (2006). Identification of a Maize Kernel Pathogenesis-Related Protein and Evidence for Its Involvement in Resistance toAspergillus flavusInfection and Aflatoxin Production. Phytopathology, 96(1), 87-95. doi:10.1094/phyto-96-0087

Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., … Dietrich, R. A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26(4), 403-410. doi:10.1038/82521

Lodha, T. D., & Basak, J. (2011). Plant–Pathogen Interactions: What Microarray Tells About It? Molecular Biotechnology, 50(1), 87-97. doi:10.1007/s12033-011-9418-2

Carvalho, C. M., Santos, A. A., Pires, S. R., Rocha, C. S., Saraiva, D. I., Machado, J. P. B., … Fontes, E. P. B. (2008). Regulated Nuclear Trafficking of rpL10A Mediated by NIK1 Represents a Defense Strategy of Plant Cells against Virus. PLoS Pathogens, 4(12), e1000247. doi:10.1371/journal.ppat.1000247

Fukushi, S., Okada, M., Stahl, J., Kageyama, T., Hoshino, F. B., & Katayama, K. (2001). Ribosomal Protein S5 Interacts with the Internal Ribosomal Entry Site of Hepatitis C Virus. Journal of Biological Chemistry, 276(24), 20824-20826. doi:10.1074/jbc.c100206200

Eiras, M., Nohales, M. A., Kitajima, E. W., Flores, R., & Daròs, J. A. (2010). Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 156(3), 529-533. doi:10.1007/s00705-010-0867-x

Mateyak, M. K., & Kinzy, T. G. (2010). eEF1A: Thinking Outside the Ribosome. Journal of Biological Chemistry, 285(28), 21209-21213. doi:10.1074/jbc.r110.113795

Li, Z., Pogany, J., Tupman, S., Esposito, A. M., Kinzy, T. G., & Nagy, P. D. (2010). Translation Elongation Factor 1A Facilitates the Assembly of the Tombusvirus Replicase and Stimulates Minus-Strand Synthesis. PLoS Pathogens, 6(11), e1001175. doi:10.1371/journal.ppat.1001175

Yamaji, Y., Sakurai, K., Hamada, K., Komatsu, K., Ozeki, J., Yoshida, A., … Hibi, T. (2009). Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection. Archives of Virology, 155(2), 263-268. doi:10.1007/s00705-009-0571-x

Hopkins, M. T., Lampi, Y., Wang, T.-W., Liu, Z., & Thompson, J. E. (2008). Eukaryotic Translation Initiation Factor 5A Is Involved in Pathogen-Induced Cell Death and Development of Disease Symptoms in Arabidopsis. Plant Physiology, 148(1), 479-489. doi:10.1104/pp.108.118869

Szick-Miranda, K., Jayachandran, S., Tam, A., Werner-Fraczek, J., Williams, A. J., & Bailey-Serres, J. (2003). Evaluation of Translational Control Mechanisms in Response to Oxygen Deprivation in Maize. Russian Journal of Plant Physiology, 50(6), 774-786. doi:10.1023/b:rupp.0000003275.97021.2b

Castelló, A., Quintas, A., Sánchez, E. G., Sabina, P., Nogal, M., Carrasco, L., & Revilla, Y. (2009). Regulation of Host Translational Machinery by African Swine Fever Virus. PLoS Pathogens, 5(8), e1000562. doi:10.1371/journal.ppat.1000562

Sanz, M. Á., Castelló, A., Ventoso, I., Berlanga, J. J., & Carrasco, L. (2009). Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells. PLoS ONE, 4(3), e4772. doi:10.1371/journal.pone.0004772

Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. C., & Brierley, I. (2006). A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature, 441(7090), 244-247. doi:10.1038/nature04735

Jao, D. L.-E., & Chen, K. Y. (2006). Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. Journal of Cellular Biochemistry, 97(3), 583-598. doi:10.1002/jcb.20658

Zanelli, C. F., Maragno, A. L. C., Gregio, A. P. B., Komili, S., Pandolfi, J. R., Mestriner, C. A., … Valentini, S. R. (2006). eIF5A binds to translational machinery components and affects translation in yeast. Biochemical and Biophysical Research Communications, 348(4), 1358-1366. doi:10.1016/j.bbrc.2006.07.195

Greganova, E., Altmann, M., & Bütikofer, P. (2011). Unique modifications of translation elongation factors. FEBS Journal, 278(15), 2613-2624. doi:10.1111/j.1742-4658.2011.08199.x

Gupta, P. K., Liu, S., Batavia, M. P., & Leppla, S. H. (2008). The diphthamide modification on elongation factor-2 renders mammalian cells resistant to ricin. Cellular Microbiology, 10(8), 1687-1694. doi:10.1111/j.1462-5822.2008.01159.x

Ji, W. T., Wang, L., Lin, R. C., Huang, W. R., & Liu, H. J. (2009). Avian reovirus influences phosphorylation of several factors involved in host protein translation including eukaryotic translation elongation factor 2 (eEF2) in Vero cells. Biochemical and Biophysical Research Communications, 384(3), 301-305. doi:10.1016/j.bbrc.2009.04.116

Yamasaki, S., & Anderson, P. (2008). Reprogramming mRNA translation during stress. Current Opinion in Cell Biology, 20(2), 222-226. doi:10.1016/j.ceb.2008.01.013

Sano, T., Barba, M., Li, S.-F., & Hadidi, A. (2010). Viroids and RNA silencing: Mechanism, role in viroid pathogenicity and development of viroid-resistant plants. GM Crops, 1(2), 23-29. doi:10.4161/gmcr.1.2.11871


This item appears in the following Collection(s)

Show full item record