- -

A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato

Mostrar el registro completo del ítem

Lisón Párraga, MP.; Tarraga Herrero, S.; López Gresa, MP.; Sauri Ferrando, A.; Torres Vidal, C.; Campos Beneyto, L.; Belles Albert, JM.... (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. Proteomics. 13(5):833-844. https://doi.org/10.1002/pmic.201200286

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61835

Ficheros en el ítem

Metadatos del ítem

Título: A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato
Autor: Lisón Párraga, María Purificación Tarraga Herrero, Susana López Gresa, Mª Pilar Sauri Ferrando, Asunción Torres Vidal, Cristina Campos Beneyto, Laura Belles Albert, José Mª Conejero Tomás, Vicente Rodrigo Bravo, Ismael
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
Viroids are single-stranded, circular, noncoding RNAs that infect plants, causing devastating diseases. In this work, we employed 2D DIGE, followed by MS identification, to analyze the response of tomato plants infected ...[+]
Palabras clave: 2D DIGE , Plant stress , Tomato , Translation factors , Viroid
Derechos de uso: Reserva de todos los derechos
Fuente:
Proteomics. (issn: 1615-9853 )
DOI: 10.1002/pmic.201200286
Editorial:
Wiley-Blackwell
Versión del editor: http://dx.doi.org/10.1002/pmic.201200286
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BFU2009-11958/ES/Señalizacion Y Respuesta Defensiva De Las Plantas Frente A Patogenos/
info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F231/
info:eu-repo/grantAgreement/CSIC//JAEDoc 08 00402/
Descripción: This is the accepted version of the following article: Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., Bellés, J. M., Conejero, V. and Rodrigo, I. (2013), A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. Proteomics, 13: 833–844, which has been published in final form at http://dx.doi.org/10.1002/pmic.201200286.
Agradecimientos:
We would like to thank the Proteomic Service of the IBMCP (Instituto de Biologia Molecular y Celular de Plantas, Valencia, Spain) for the technical assistance. We also thank Dr. Alejandro Ferrando (Instituto de Biologia ...[+]
Tipo: Artículo

References

Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Ding, B., & Itaya, A. (2007). Viroid: A Useful Model for Studying the Basic Principles of Infection and RNA Biology. Molecular Plant-Microbe Interactions, 20(1), 7-20. doi:10.1094/mpmi-20-0007

Ding, B., Kwon, M.-O., Hammond, R., & Owens, R. (1997). Cell-to-cell movement of potato spindle tuber viroid. The Plant Journal, 12(4), 931-936. doi:10.1046/j.1365-313x.1997.12040931.x [+]
Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Ding, B., & Itaya, A. (2007). Viroid: A Useful Model for Studying the Basic Principles of Infection and RNA Biology. Molecular Plant-Microbe Interactions, 20(1), 7-20. doi:10.1094/mpmi-20-0007

Ding, B., Kwon, M.-O., Hammond, R., & Owens, R. (1997). Cell-to-cell movement of potato spindle tuber viroid. The Plant Journal, 12(4), 931-936. doi:10.1046/j.1365-313x.1997.12040931.x

Zhu, Y., Green, L., Woo, Y.-M., Owens, R., & Ding, B. (2001). Cellular Basis of Potato Spindle Tuber Viroid Systemic Movement. Virology, 279(1), 69-77. doi:10.1006/viro.2000.0724

Qi, Y., Pélissier, T., Itaya, A., Hunt, E., Wassenegger, M., & Ding, B. (2004). Direct Role of a Viroid RNA Motif in Mediating Directional RNA Trafficking across a Specific Cellular Boundary. The Plant Cell, 16(7), 1741-1752. doi:10.1105/tpc.021980

Flores, R., Grubb, D., Elleuch, A., Nohales, M.-Á., Delgado, S., & Gago, S. (2011). Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme. RNA Biology, 8(2), 200-206. doi:10.4161/rna.8.2.14238

Ding, B. (2009). The Biology of Viroid-Host Interactions. Annual Review of Phytopathology, 47(1), 105-131. doi:10.1146/annurev-phyto-080508-081927

Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7

Vera, P., & Conejero, V. (1988). Pathogenesis-Related Proteins of Tomato. Plant Physiology, 87(1), 58-63. doi:10.1104/pp.87.1.58

Breijo, F. J. G., Garro, R., & Conejero, V. (1990). C7(P32) and C6(P34) PR proteins induced in tomato leaves by citrus exocortis viroid infection are chitinases. Physiological and Molecular Plant Pathology, 36(3), 249-260. doi:10.1016/0885-5765(90)90029-w

Domingo, C., Conejero, V., & Vera, P. (1994). Genes encoding acidic and basic class III ?-1,3-glucanases are expressed in tomato plants upon viroid infection. Plant Molecular Biology, 24(5), 725-732. doi:10.1007/bf00029854

Bellés, J. M., Granell, A., Durán-vila, N., & Conejero, V. (1989). ACC Synthesis as the Activated Step Responsible for the Rise of Ethylene Production Accompanying Citrus Exocortis Viroid Infection in Tomato Plants. Journal of Phytopathology, 125(3), 198-208. doi:10.1111/j.1439-0434.1989.tb01061.x

Belles, J. M., Perez-Amador, M. A., Carbonell, J., & Conejero, V. (1993). Correlation between Ornithine Decarboxylase and Putrescine in Tomato Plants Infected by Citrus Exocortis Viroid or Treated with Ethephon. Plant Physiology, 102(3), 933-937. doi:10.1104/pp.102.3.933

Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227

Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014

Tárraga, S., Lisón, P., López-Gresa, M. P., Torres, C., Rodrigo, I., Bellés, J. M., & Conejero, V. (2010). Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. Journal of Experimental Botany, 61(15), 4325-4338. doi:10.1093/jxb/erq234

Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8

López-Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). Metabolic response of tomato leaves upon different plantâ pathogen interactions. Phytochemical Analysis, 21(1), 89-94. doi:10.1002/pca.1179

Eggert, K., & Pawelzik, E. (2011). Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare subsp. nudum). PROTEOMICS, 11(5), 972-985. doi:10.1002/pmic.201000322

Li, Y., Zhang, Z., Nie, Y., Zhang, L., & Wang, Z. (2012). Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice. PROTEOMICS, 12(14), 2340-2354. doi:10.1002/pmic.201200054

Xu, Q.-F., Cheng, W.-S., Li, S.-S., Li, W., Zhang, Z.-X., Xu, Y.-P., … Cai, X.-Z. (2012). Identification of genes required for Cf-dependent hypersensitive cell death by combined proteomic and RNA interfering analyses. Journal of Experimental Botany, 63(7), 2421-2435. doi:10.1093/jxb/err397

Castillejo, M. Á., Fernández-Aparicio, M., & Rubiales, D. (2011). Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. Journal of Experimental Botany, 63(1), 107-119. doi:10.1093/jxb/err246

Badillo-Vargas, I. E., Rotenberg, D., Schneweis, D. J., Hiromasa, Y., Tomich, J. M., & Whitfield, A. E. (2012). Proteomic Analysis of Frankliniella occidentalis and Differentially Expressed Proteins in Response toTomato Spotted Wilt VirusInfection. Journal of Virology, 86(16), 8793-8809. doi:10.1128/jvi.00285-12

Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053

Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., … Mann, M. (1996). Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences, 93(25), 14440-14445. doi:10.1073/pnas.93.25.14440

Varó, I., Rigos, G., Navarro, J. C., del Ramo, J., Calduch-Giner, J., Hernández, A., … Torreblanca, A. (2010). Effect of ivermectin on the liver of gilthead sea bream Sparus aurata: A proteomic approach. Chemosphere, 80(5), 570-577. doi:10.1016/j.chemosphere.2010.04.030

Pauwels, K., Sanchez del Pino, M. M., Feller, G., & Van Gelder, P. (2012). Decoding the Folding of Burkholderia glumae Lipase: Folding Intermediates En Route to Kinetic Stability. PLoS ONE, 7(5), e36999. doi:10.1371/journal.pone.0036999

Dube, A., Bisaillon, M., & Perreault, J.-P. (2009). Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid. Journal of Virology, 83(23), 12057-12067. doi:10.1128/jvi.01151-09

Rodrigo, I., Vera, P., Frank, R., & Conejero, V. (1991). Identification of the viroid-induced tomato pathogenesis-related (PR) protein P23 as the thaumatin-like tomato protein NP24 associated with osmotic stress. Plant Molecular Biology, 16(5), 931-934. doi:10.1007/bf00015088

Tornero, P., Gadea, J., Conejero, V., & Vera, P. (1997). TwoPR-1Genes from Tomato Are Differentially Regulated and Reveal a Novel Mode of Expression for a Pathogenesis-Related Gene During the Hypersensitive Response and Development. Molecular Plant-Microbe Interactions, 10(5), 624-634. doi:10.1094/mpmi.1997.10.5.624

Takeda, R., & Ding, B. (2009). Viroid Intercellular Trafficking: RNA Motifs, Cellular Factors and Broad Impacts. Viruses, 1(2), 210-221. doi:10.3390/v1020210

Kavroulakis, N., Ntougias, S., Zervakis, G. I., Ehaliotis, C., Haralampidis, K., & Papadopoulou, K. K. (2007). Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. Journal of Experimental Botany, 58(14), 3853-3864. doi:10.1093/jxb/erm230

Larson, R. L., Hill, A. L., & Nuñez, A. (2007). Characterization of Protein Changes Associated with Sugar Beet (Beta vulgaris) Resistance and Susceptibility toFusarium oxysporum. Journal of Agricultural and Food Chemistry, 55(19), 7905-7915. doi:10.1021/jf070876q

Swoboda, I., Hoffmann-Sommergruber, K., O’Riordain, G., Scheiner, O., Heberle-Bors, E., & Vicente, O. (1996). Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiologia Plantarum, 96(3), 433-438. doi:10.1111/j.1399-3054.1996.tb00455.x

Zhou, X.-J., Lu, S., Xu, Y.-H., Wang, J.-W., & Chen, X.-Y. (2002). A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Science, 162(4), 629-636. doi:10.1016/s0168-9452(02)00002-x

Park, C.-J., Kim, K.-J., Shin, R., Park, J. M., Shin, Y.-C., & Paek, K.-H. (2003). Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal, 37(2), 186-198. doi:10.1046/j.1365-313x.2003.01951.x

Chen, Z.-Y., Brown, R. L., Rajasekaran, K., Damann, K. E., & Cleveland, T. E. (2006). Identification of a Maize Kernel Pathogenesis-Related Protein and Evidence for Its Involvement in Resistance toAspergillus flavusInfection and Aflatoxin Production. Phytopathology, 96(1), 87-95. doi:10.1094/phyto-96-0087

Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., … Dietrich, R. A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26(4), 403-410. doi:10.1038/82521

Lodha, T. D., & Basak, J. (2011). Plant–Pathogen Interactions: What Microarray Tells About It? Molecular Biotechnology, 50(1), 87-97. doi:10.1007/s12033-011-9418-2

Carvalho, C. M., Santos, A. A., Pires, S. R., Rocha, C. S., Saraiva, D. I., Machado, J. P. B., … Fontes, E. P. B. (2008). Regulated Nuclear Trafficking of rpL10A Mediated by NIK1 Represents a Defense Strategy of Plant Cells against Virus. PLoS Pathogens, 4(12), e1000247. doi:10.1371/journal.ppat.1000247

Fukushi, S., Okada, M., Stahl, J., Kageyama, T., Hoshino, F. B., & Katayama, K. (2001). Ribosomal Protein S5 Interacts with the Internal Ribosomal Entry Site of Hepatitis C Virus. Journal of Biological Chemistry, 276(24), 20824-20826. doi:10.1074/jbc.c100206200

Eiras, M., Nohales, M. A., Kitajima, E. W., Flores, R., & Daròs, J. A. (2010). Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 156(3), 529-533. doi:10.1007/s00705-010-0867-x

Mateyak, M. K., & Kinzy, T. G. (2010). eEF1A: Thinking Outside the Ribosome. Journal of Biological Chemistry, 285(28), 21209-21213. doi:10.1074/jbc.r110.113795

Li, Z., Pogany, J., Tupman, S., Esposito, A. M., Kinzy, T. G., & Nagy, P. D. (2010). Translation Elongation Factor 1A Facilitates the Assembly of the Tombusvirus Replicase and Stimulates Minus-Strand Synthesis. PLoS Pathogens, 6(11), e1001175. doi:10.1371/journal.ppat.1001175

Yamaji, Y., Sakurai, K., Hamada, K., Komatsu, K., Ozeki, J., Yoshida, A., … Hibi, T. (2009). Significance of eukaryotic translation elongation factor 1A in tobacco mosaic virus infection. Archives of Virology, 155(2), 263-268. doi:10.1007/s00705-009-0571-x

Hopkins, M. T., Lampi, Y., Wang, T.-W., Liu, Z., & Thompson, J. E. (2008). Eukaryotic Translation Initiation Factor 5A Is Involved in Pathogen-Induced Cell Death and Development of Disease Symptoms in Arabidopsis. Plant Physiology, 148(1), 479-489. doi:10.1104/pp.108.118869

Szick-Miranda, K., Jayachandran, S., Tam, A., Werner-Fraczek, J., Williams, A. J., & Bailey-Serres, J. (2003). Evaluation of Translational Control Mechanisms in Response to Oxygen Deprivation in Maize. Russian Journal of Plant Physiology, 50(6), 774-786. doi:10.1023/b:rupp.0000003275.97021.2b

Castelló, A., Quintas, A., Sánchez, E. G., Sabina, P., Nogal, M., Carrasco, L., & Revilla, Y. (2009). Regulation of Host Translational Machinery by African Swine Fever Virus. PLoS Pathogens, 5(8), e1000562. doi:10.1371/journal.ppat.1000562

Sanz, M. Á., Castelló, A., Ventoso, I., Berlanga, J. J., & Carrasco, L. (2009). Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells. PLoS ONE, 4(3), e4772. doi:10.1371/journal.pone.0004772

Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. C., & Brierley, I. (2006). A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature, 441(7090), 244-247. doi:10.1038/nature04735

Jao, D. L.-E., & Chen, K. Y. (2006). Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. Journal of Cellular Biochemistry, 97(3), 583-598. doi:10.1002/jcb.20658

Zanelli, C. F., Maragno, A. L. C., Gregio, A. P. B., Komili, S., Pandolfi, J. R., Mestriner, C. A., … Valentini, S. R. (2006). eIF5A binds to translational machinery components and affects translation in yeast. Biochemical and Biophysical Research Communications, 348(4), 1358-1366. doi:10.1016/j.bbrc.2006.07.195

Greganova, E., Altmann, M., & Bütikofer, P. (2011). Unique modifications of translation elongation factors. FEBS Journal, 278(15), 2613-2624. doi:10.1111/j.1742-4658.2011.08199.x

Gupta, P. K., Liu, S., Batavia, M. P., & Leppla, S. H. (2008). The diphthamide modification on elongation factor-2 renders mammalian cells resistant to ricin. Cellular Microbiology, 10(8), 1687-1694. doi:10.1111/j.1462-5822.2008.01159.x

Ji, W. T., Wang, L., Lin, R. C., Huang, W. R., & Liu, H. J. (2009). Avian reovirus influences phosphorylation of several factors involved in host protein translation including eukaryotic translation elongation factor 2 (eEF2) in Vero cells. Biochemical and Biophysical Research Communications, 384(3), 301-305. doi:10.1016/j.bbrc.2009.04.116

Yamasaki, S., & Anderson, P. (2008). Reprogramming mRNA translation during stress. Current Opinion in Cell Biology, 20(2), 222-226. doi:10.1016/j.ceb.2008.01.013

Sano, T., Barba, M., Li, S.-F., & Hadidi, A. (2010). Viroids and RNA silencing: Mechanism, role in viroid pathogenicity and development of viroid-resistant plants. GM Crops, 1(2), 23-29. doi:10.4161/gmcr.1.2.11871

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem